作为一名人民教师,就有可能用到教案,借助教案可以提高教学质量,收到预期的教学效果。教案应该怎么写才好呢?以下是小编收集整理的人教版八年级数学上册教案,仅供参考,希望能够帮助到大家。
教学目标
1.等腰三角形的概念.
2.等腰三角形的性质.
3.等腰三角形的概念及性质的应用.
教学重点:
等腰三角形的概念及性质.2.等腰三角形性质的应用.
教学难点:
等腰三角形三线合一的性质的理解及其应用.
教学过程
Ⅰ.提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:
①三角形是轴对称图形吗
②什么样的三角形是轴对称图形
有的三角形是轴对称图形,有的三角形不是.
问题:那什么样的三角形是轴对称图形
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.
Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形.
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.
思考:
1.等腰三角形是轴对称图形吗请找出它的对称轴.
2.等腰三角形的两底角有什么关系
3.顶角的平分线所在的直线是等腰三角形的对称轴吗
4.底边上的中线所在的直线是等腰三角形的对称轴吗底边上的高所在的直线呢
结论:等腰三角形是轴对称图形.它的对称轴是顶角的'平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.
由此可以得到等腰三角形的性质:
1.等腰三角形的两个底角相等(简写成“等边对等角”).
2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).
如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA=∠BDC=90°.
[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,
求:△ABC各角的度数.
分析:根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形内角和为180°,就可求出△ABC的三个内角.
把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.
解:因为AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等边对等角).
设∠A=x,则∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.
[师]下面我们通过练习来巩固这节课所学的知识.
Ⅲ.随堂练习:1.课本P51练习1、2、3.2.阅读课本P49~P51,然后小结.
Ⅳ.课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.
Ⅴ.作业:课本P56习题12.3第1、2、3、4题.
板书设计
12.3.1.1等腰三角形
一、设计方案作出一个等腰三角形
二、等腰三角形性质:1.等边对等角2.三线合一
【学习目标】
1.掌握等腰三角形的有关概念和性质,运用等腰三角形的性质解决问题。
2.通过学生之间的交流活动,培养学生主动与他人合作交流的意识和良好的学习习惯。
【学习重点】
探索和掌握等腰三角形的性质及其应用。
【学习难点】
等腰三角形的性质的应用。
【学习过程】
一、你知道吗
等腰三角形的有关概念
《等腰三角形应用》讲义
课前预习
1.SAS,SSS,ASA,AAS,HL
2.这条线段的两个端点的距离相等
3.这个角的两边的距离相等
4.这样的.点有4个
知识点睛
1.线段垂直平分线上的点到这条线段的两个端点的距离相等
2.角平分线上的点到这个角的两边距离相等
3.顶角的平分线底边上的中线底边上的高三线合一
《13.3等腰三角形》专项练习
1、填空题
2、如图,以等腰直角三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,如此作下去。若OA=OB=1,则第个等腰直角三角形的面积。
1.掌握等边三角形的性质和判定方法.2.培养分析问题、解决问题的能力.
等边三角形的性质和判定方法.
等边三角形性质的应用
I、创设情境,提出问题
回顾上节课讲过的等边三角形的'有关知识
1.等边三角形是轴对称图形,它有三条对称轴.
2.等边三角形每一个角相等,都等于60°
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.
II、例题与练习
1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么
①在边AB、AC上分别截取AD=AE.
②作∠ADE=60°,D、E分别在边AB、AC上.
③过边AB上D点作DE∥BC,交边AC于E点.
2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.
3.P56页练习1、2
III、课堂小结:1.等腰三角形和性质;等腰三角形的条件
V布置作业:1.P58页习题12.3第ll题.
2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个
1.知识与技能
领会运用完全平方公式进行因式分解的方法,发展推理能力.
2.过程与方法
经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.
3.情感、态度与价值观
培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.
重、难点与关键
1.重点:理解完全平方公式因式分解,并学会应用.
2.难点:灵活地应用公式法进行因式分解.
3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,达到能应用公式法分解因式的.目的
教学方法
采用“自主探究”教学方法,在教师适当指导下完成本节课内容.
一、回顾交流,导入新知
【问题牵引】
1.分解因式:
(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;
(3)x2-0.01y2.
【知识迁移】
2.计算下列各式:
(1)(m-4n)2;(2)(m+4n)2;
(3)(a+b)2;(4)(a-b)2.
【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.
3.分解因式:
(1)m2-8mn+16n2(2)m2+8mn+16n2;
(3)a2+2ab+b2;(4)a2-2ab+b2.
【学生活动】从逆向思维的角度入手,很快得到下面答案:
解:
(1)m2-8mn+16n2=(m-4n)2;
(2)m2+8mn+16n2=(m+4n)2;
(3)a2+2ab+b2=(a+b)2;
(4)a2-2ab+b2=(a-b)2.
【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.
二、范例学习,应用所学
【例1】把下列各式分解因式:
(1)-4a2b+12ab2-9b3;
(2)8a-4a2-4;
(3)(x+y)2-14(x+y)+49;(4)+n4.
【例2】如果x2+axy+16y2是完全平方,求a的值.
【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.
三、随堂练习,巩固深化
课本P170练习第1、2题.
【探研时空】
1.已知x+y=7,xy=10,求下列各式的值.
(1)x2+y2;(2)(x-y)2
2.已知x+=-3,求x4+的值.
四、课堂总结,发展潜能
由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:
a2-b2=(a+b)(a-b);
a2±ab+b2=(a±b)2.
在运用公式因式分解时,要注意:
(1)每个公式的形式与特点,通过对多项式的项数、次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,然后再运用公式分解.
五、布置作业,专题突破
1.认识变量、常量.
2.学会用含一个变量的代数式表示另一个变量.
教学重点
2.用式子表示变量间关系.
教学难点
用含有一个变量的式子表示另一个变量.
Ⅰ.提出问题,创设情境
1.请同学们根据题意填写下表:
t/时12345
s/千米
2.在以上这个过程中,变化的量是________.变变化的量是__________.
3.试用含t的式子表示s.
Ⅱ.导入新课
首先让学生思考上面的几个问题,可以互相讨论一下,然后回答.
[活动一]
1.每张电影票售价为10元,如果早场售出票150张,日场售出205张,晚场售出310张.三场电影的`票房收入各多少元.设一场电影售票x张,票房收入y元.怎样用含x的式子表示y
2.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含有重物质量m的式子表示受力后的弹簧长度?
引导学生通过合理、正确的思维方法探索出变化规律.
结论:
1.早场电影票房收入:150×10=1500(元)
日场电影票房收入:205×10=20xx(元)
晚场电影票房收入:310×10=3100(元)
关系式:y=10x
2.挂1kg重物时弹簧长度:1×0.5+10=10.5(cm)
挂2kg重物时弹簧长度:2×0.5+10=11(cm)
挂3kg重物时弹簧长度:3×0.5+10=11.5(cm)
关系式:L=0.5m+10
通过上述活动,我们清楚地认识到,要想寻求事物变化过程的规律,首先需确定在这个过程中哪些量是变化的,而哪些量又是不变的.在一个变化过程中,我们称数值发生变化的量为变量(variable),那么数值始终不变的量称之为常量(constant).如上述两个过程中,售出票数x、票房收入y;重物质量m,弹簧长度L都是变量.而票价10元,弹簧原长10cm……都是常量.
[活动二]
1.要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r?
2.用10m长的绳子围成矩形,试改变矩形长度.观察矩形的面积怎样变化.记录不同的矩形的长度值,计算相应的矩形面积的值,探索它们的变化规律:设矩形的长度为xcm,面积为Scm2.怎样用含有x的式子表示S?
1.要求已知面积的圆的半径,可利用圆的面积公式经过变形求出S=r2r=
面积为10cm2的圆半径r=≈1.78(cm)
面积为20cm2的圆半径r=≈2.52(cm)
关系式:r=
2.因矩形两组对边相等,所以它一条长与一条宽的和应是周长10cm的一半,即5cm.
若长为1cm,则宽为5-1=4(cm)
据矩形面积公式:S=1×4=4(cm2)
若长为2cm,则宽为5-2=3(cm)
面积S=2×(5-2)=6(cm2)
……
若长为xcm,则宽为5-x(cm)
面积S=x(5-x)=5x-x2(cm2)
从以上两个题中可以看出,在探索变量间变化规律时,可利用以前学过的一些有关知识公式进行分析寻找,以便尽快找出之间关系,确定关系式.
Ⅲ.随堂练习
1.购买一些铅笔,单价0.2元/支,总价y元随铅笔支数x变化,指出其中的常量与变量,并写出关系式.
2.一个三角形的底边长5cm,高h可以任意伸缩.写出面积S随h变化关系式,并指出其中常量与变量.
解:1.买1支铅笔价值1×0.2=0.2(元)
买2支铅笔价值2×0.2=0.4(元)
买x支铅笔价值x×0.2=0.2x(元)
所以y=0.2x
其中单价0.2元/支是常量,总价y元与支数x是变量.
2.根据三角形面积公式可知:
当高h为1cm时,面积S=×5×1=2.5cm2
当高h为2cm时,面积S=×5×2=5cm2
当高为hcm,面积S=×5×h=2.5hcm2
教学目标:完全平方公式的推导及其应用;完全平方公式的几何解释;视学生对算理的理解,有意识地培养学生的思维条理性和表达能力.
教学重点与难点:完全平方公式的推导过程、结构特点、几何解释,灵活应用.
教学过程:
一、提出问题,学生自学
问题:根据乘方的定义,我们知道:a2=aa,那么(a+b)2应该写成什么样的形式呢?(a+b)2的运算结果有什么规律?计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;
(2)(p1)2=(p1)(p1)=_______;(m2)2=_______;
学生讨论,教师归纳,得出结果:
(1)(p+1)2=(p+1)(p+1)=p2+2p+1
(m+2)2=(m+2)(m+2)=m2+4m+4
(2)(p1)2=(p1)(p1)=p22p+1
(m2)2=(m2)(m2)=m24m+4
分析推广:结果中有两个数的平方和,而2p=2p1,4m=2m2,恰好是两个数乘积的.二倍(1)(2)之间只差一个符号.
推广:计算(a+b)2=__________;(ab)2=__________.
得到公式,分析公式
结论:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2
即:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍.
二、几何分析:
你能根据图(1)和图(2)的面积说明完全平方公式吗?
图(1)大正方形的边长为(a+b),面积就是(a+b)2,同时,大正方形可以分成图中①②③④四个部分,它们分别的面积为a2、ab、ab、b2,因此,整个面积为a2+ab+ab+b2=a2+2ab+b2,即说明(a+b)2=a2+2ab+b2.请点击下载Word版完整教案:新人教版八年级数学上册《完全平方公式》教案教案《新人教版八年级数学上册《完全平方公式》教案》,来自网!
(一)教学知识点
1.经历探索积的乘方的运算法则的过程,进一步体会幂的意义。
2.理解积的乘方运算法则,能解决一些实际问题。
(二)能力训练要求
1.在探究积的乘方的运算法则的过程中,发展推理能力和有条理的表达能力。
2.学习积的乘方的运算法则,提高解决问题的能力。
(三)情感与价值观要求
在发展推理能力和有条理的.语言、符号表达能力的同时,进一步体会学习数学的兴趣,提高学习数学的信心,感受数学的简洁美。
积的乘方运算法则及其应用。
幂的运算法则的灵活运用。
自学─引导相结合的方法。
同底数幂的乘法、幂的乘方、积的乘方成一个体系,研究方法类同,有前两节课做基础,本节课可放手让学生自学,教师引导学生总结,从而让学生真正理解幂的运算方法,能解决一些实际问题。
教具准备
投影片.
[师]还是就上节课开课提出的问题:若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?
[生]它的体积应是V=(1.1×103)3cm3。
[师]这个结果是幂的乘方形式吗?
[生]不是,底数是1.1和103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理。
[师]你分析得很有道理,积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,老师想请同学们自己探索,发现其中的奥秒。
老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳。
出示投影片
1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?
(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()
(2)(ab)3=______=_______=a()b()
(3)(ab)n=______=______=a()b()(n是正整数)
2.把你发现的规律用文字语言表述,再用符号语言表达。
3.解决前面提到的正方体体积计算问题。
4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法。
5.完成课本P170例3。
学生探究的经过:
1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则。同样的方法可以算出(2)、(3)题。
知识目标:理解变量与函数的概念以及相互之间的关系
能力目标:增强对变量的理解
情感目标:渗透事物是运动的,运动是有规律的辨证思想
重点:变量与常量
难点:对变量的判断
教学媒体:多媒体电脑,绳圈
教学说明:本节渗透找变量之间的简单关系,试列简单关系式
教学设计:
引入:
t/m12345
s/km
新课:
问题:(1)每张电影票的售价为10元,如果早场售出票150张,日场售出票205张,晚场售出票310张,三场电影的票房收入各多少元?设一场电影受出票x张,票房收入为y元,怎样用含x的式子表示y
(2)在一根弹簧的下端悬挂中重物,改变并记录重物的质量,观察并记录弹簧长度的变化规律,如果弹簧原长10cm,每1kg重物使弹簧伸长0.5cm,怎样用含重物质量m(单位:kg)的式子表示受力后弹簧长度l(单位:cm)?
(3)要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含圆面积s的式子表示圆的半径r
(4)用10m长的绳子围成长方形,试改变长方形的长度,观察长方形的面积怎样变化。记录不同的长方形的长度值,计算相应的长方形面积的值,探索它们的变化规律,设长方形的`长为xm,面积为sm2,怎样用含x的式子表示s?
在一个变化过程中,我们称数值发生变化的量为变量(variable).数值始终不变的量为常量。
指出上述问题中的变量和常量。
范例:写出下列各问题中所满足的关系式,并指出各个关系式中,哪些量是变量,哪些量是常量?
(1)用总长为60m的篱笆围成矩形场地,求矩形的面积s(m2)与一边长x(m)之间的关系式;
(2)购买单价是0.4元的铅笔,总金额y(元)与购买的铅笔的数量n(支)的关系;
(4)银行规定:五年期存款的年利率为2.79%,则某人存入x元本金与所得的本息和y(元)之间的关系。
活动:
1.分别指出下列各式中的常量与变量.
(1)圆的面积公式s=πr2;
(2)正方形的l=4a;
(3)大米的单价为2.50元/千克,则购买的大米的数量x(kg)与金额与金额y的关系为y=2.5x.
2.写出下列问题的关系式,并指出不、常量和变量.
(1)某种活期储蓄的月利率为0.16%,存入10000元本金,按国家规定,取款时,应缴纳利息部分的20%的利息税,求这种活期储蓄扣除利息税后实得的本息和y(元)与所存月数x之间的关系式.
(2)如图,每个图中是由若干个盆花组成的图案,每条边(包括两个顶点)有n盆花,每个图案的花盆总数是s,求s与n之间的关系式.
思考:怎样列变量之间的关系式?
小结:变量与常量
作业:阅读教材5页,11.1.2函数
教学目标:
理解同底数幂的乘法法则,运用同底数幂的乘法法则解决一些实际问题.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到般再到特殊的认知规律.
教学重点与难点:
正确理解同底数幂的'乘法法则以及适用范围.
an的意义:an表示n个a相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a叫做底数,n是指数.
二、创设情境,感觉新知
问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?
学生分析,总结结果
1012×103=()×(10×10×10)==1015.
通过观察可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.
学生动手:
计算下列各式:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整数)
教师引导学生注意观察计算前后底数和指数的关系,并能用自己的语言描述.
得到结论:
(1)特点:这三个式子都是底数相同的幂相乘.相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.
(2)一般性结论:am·an表示同底数幂的乘法.根据幂的意义可得:
am·an=()·()=()=am+n
am·an=am+n(m、n都是正整数),即为:同底数幂相乘,底数不变,指数相加
三、小结:
同底数幂的乘法的运算法则:同底数幂相乘,底数不变,指数相加.
注意两点:
一是必须是同底数幂的乘法才能运用这个性质;
二是运用这个性质计算时一定是底数不变,指数相加,即am·an=am+n
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
3、难点的突破方法:
首先应先复习组中值的定义,在七年级下教材P72中已经介绍过组中值定义。因为在根据频数分布表求加权平均数近似值过程中要用到组中值去代替一组数据中的每个数据的值,所以有必要在这里复习组中值定义。
应给学生介绍为什么可以利用组中值代替一组数据中的每个数据的值,以及这样代替的好处、不妨举一个例子,在一组中如果数据分布较为均匀时,比如教材P140探究问题的表格中的第三组数据,它的范围是41≤X≤61,共有20个数据,若分布较为平均,41、42、43、44…60个出现1次,那么这组数据的和为41+42+…+60=1010。而用组中值51去乘以频数20恰好为1020≈1010,即当数据分布较为平均时组中值恰好近似等于它的平均数。所以利用组中值X频数去代替这组数据的和还是比较合理的,而且这样做的好处是简化了计算量。
为了更好的理解这种近似计算的方法和合理性,可以让学生去读统计表,体会表格的实际意义。
三、例习题的意图分析
1、教材P140探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P140的思考的.意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P141利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
四、课堂引入
采用教材原有的引入问题,设计的几个问题如下:
(1)、请同学读P140探究问题,依据统计表可以读出哪些信息
(2)、这里的组中值指什么,它是怎样确定的
(3)、第二组数据的频数5指什么呢
(4)、如果每组数据在本组中分布较为均匀,比组数据的平均值和组中值有什么关系。
五、随堂练习
0
0<≤6
20
30
40
50
(1)、第二组数据的组中值是多少
2、某班40名学生身高情况如下图,
请计算该班学生平均身高
答案1.(1).15.(2)28.2.165
六、课后练习:
1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表
部门ABCDEFG
人数1124225
每人创得利润2052.521.51.51.2
该公司每人所创年利润的平均数是多少万元
2、下表是截至到20xx年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄
年龄频数
28≤X<304
30≤X<323
32≤X<348
34≤X<367
36≤X<389
38≤X<4011
40≤X<422
3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。
答案:1.约2.95万元2.约29岁3.60.54分贝
一、学情分析
二、教材分析
本学期教学内容共计五章,知识的前后联系,教材的教学目标,重、难点分析如下:
第十六章二次根式
本章主要内容是二次根式的概念、性质、化简和有关的计算。本章重点是理解二次根式的性质,及二次根式的化简和计算。本章的难点是正确理解二次根式的性质和运算法则
第十七章勾股定理
直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30度角所对的直角边等于斜边的一半,本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质,本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。
第十八章平行四边形
四边形是人们日常生活中应用较广泛的一种图形,尤其是平行四边形、矩形、菱形、正方形等特殊四边形的用处更多。因此,四边形既是几何中的基本图形,也是“空间与图形”领域研究的主要对象之一。本章是在学生前面学段已经学过的四边形知识、本学段学过的多边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上做进一步系统的整理和研究,本章内容的学习也反复运用了平行线和三角形的知识。从这个角度来看,本章的内容也是前面平行线和三角形等内容的应用和深化。
第十九章一次函数
一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数——一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境———建立数学模型——概念、规律、应用与拓展的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的'性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组、一次不等式的联系等。
第二十章数据的分析
本章主要研究平均数、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想。
三、提高学科教育质量的主要措施:
1、努力做好教学八认真工作。把教学八认真作为提高成绩的主要方法,认真研读新课程标准,认真钻研新教材,并根据新课程标准,认真扩充教材内容;认真上课,认真批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。
2、兴趣是的老师,爱因斯坦如是说。激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
4、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。
5、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
6、探究题的研究,课外调查,操作实践,带动班级学生学习数学,同时发展这一部分学生的特长
7、开展分层教学,布置作业设置A、B、C三类,分层布置分别适合于差、中、好三类学生,课堂上的提问照顾好好、中、差三类学生,使他们都等到发展。
8、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。
9、培养学生学习。
一、创设情景,明确目标
多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。
二、自主学习,指向目标
学习至此:请完成《学生用书》相应部分。
三、合作探究,达成目标
多边形的定义及有关概念
活动一:阅读教材P19。
展示点评:多边形是怎么组成的?常见的多边形有哪些?边数最少的多边形是几边形?什么是多边形的边、内角、外角?
小组讨论:结合具体图形说出多边形的边、内角、外角?
针对训练:见《学生用书》相应部分
多边形的对角线
活动二:(1)十边形的对角线有35条。
(2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。
展示点评:结合图形说明什么是多边形的对角线?三角形是否有对角线?从五边形的一个顶点出发可以引几条对角线?五边形有几条对角线?从n边形的一个顶点出发可以引几条对角线?n边形有多少条对角线?表达式中的(n—3)是什么意思?为什么要除以2?
反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。
小组讨论:如何灵活运用多边形对角线条数的规律解题?
正多边形的有关概念
活动二:阅读教材P20。
展示点评:画图说明什么是凸多边形和凹多边形?正多边形要求的条件是什么?边数最少的正多边形是什么?
小组讨论:判断一个多边形是否是正多边形的条件?
反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。
四、总结梳理,内化目标
本节学习的数学知识是:
1、多边形、多边形的外角,多边形的对角线。
2、凸凹多边形的概念。
五、达标检测,反思目标
1、下列叙述正确的是(D)
A、每条边都相等的多边形是正多边形
B、如果画出多边形某一条边所在的直线,这个多边形都在这条直线的同一侧,那么它一定是凸多边形
C、每个角都相等的多边形叫正多边形
D、每条边、每个角都相等的多边形叫正多边形
2、小学学过的下列图形中不可能是正多边形的是(D)
A、三角形B。正方形C。四边形D。梯形
3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的`边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。
4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。
一、教学目标
知识与技能
1、了解立方根的概念,初步学会用根号表示一个数的立方根.
2、了解开立方与立方互为逆运算,会用立方运算求某些数的立方根.
过程与方法
1让学生体会一个数的立方根的惟一性.
2培养学生用类比的思想求立方根的能力,体会立方与开立方运算的互逆性,渗透数学的转化思想。
情感态度与价值观
通过立方根符号的引入体会数学的简洁美。
二、重点难点
重点
立方根的概念和求法。
难点
立方根与平方根的区别,立方根的求法
三、学情分析
前面已经学过了平方根的知识,由于平方根与立方根的学习有很多相似之处,所以在教学设计上,主要还是采取类比的思想,在全面回顾平方根的基础上,再来引导学生进行立方根知识的学习,让学生感觉到其实立方根知识并不难,可以与平方根知识对比着学,这样可以克服学生学习新知识的陌生心理。在学习方法上,提倡让学生在反思中学习,在概念的得出,归纳性质,解题之后都要进行适当的反思,在反思中看待与理解新知识和新问题,会更理性和全面,会有更大的进步。
四、教学过程设计
教学环节问题设计师生活动备注
情境创设问题:要制作一种容积为27m3的`正方体形状的包装箱,这种包装箱的边长应该是多少?
设这种包装箱的边长为xm,则=27这就是求一个数,使它的立方等于27.
因为=27,所以x=3.即这种包装箱的边长应为3m
归纳:
立方根的概念:
创设问题情境,引起学生学习的兴趣,经小组讨论后引出概念。
通过具体问题得出立方根的概念
探究一:
根据立方根的意义填空,看看正数、0、负数的立方根各有什么特点?
因为(),所以0.125的立方根是()
因为(),所以-8的立方根是()
因为(),所以-0.125的立方根是()
因为(),所以0的立方根是()
一个正数有一个正的立方根
0有一个立方根,是它本身
一个负数有一个负的立方根
任何数都有唯一的立方根
【总结归纳】
一个数的立方根,记作,读作:“三次根号”,其中叫被开方数,3叫根指数,不能省略,若省略表示平方。.
探究二:
因为所以=
因为,所以=总结:
利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,即。
1、认识中位数和众数,并会求出一组数据中的众数和中位数。
2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。
3、会利用中位数、众数分析数据信息做出决策。
1、重点:认识中位数、众数这两种数据代表
2、难点:利用中位数、众数分析数据信息做出决策。
首先应交待清楚中位数和众数意义和作用:
中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少不受极端值的影响。
教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。
在利用中位数、众数分析实际问题时,应根据具体情况,课堂上教师应多举实例,使同学在分析不同实例中有所体会。
1、教材P143的例4的意图
(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。
(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)
(3)、问题2显然反映学习中位数的.意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。
(4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。
2、教材P145例5的意图
(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售,以便给商家合理的建议。
(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)
(3)、例5也反映了众数是数据代表的一种。
严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。
五、例习题的分析
教材P144例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。
教材P145例5,由表中第二行可以查到23.5号鞋的频数,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。
六、随堂练习
1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150
求这15个销售员该月销量的中位数和众数。
假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗如果不合理,请你制定一个合理的销售定额并说明理由。
2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:
1匹1.2匹1.5匹2匹
3月12台20台8台4台
4月16台30台14台8台
根据表格回答问题:
商店出售的各种规格空调中,众数是多少
假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定
答案:1.(1)210件、210件(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。
2.(1)1.2匹(2)通过观察可知1.2匹的销售,所以要多进1.2匹,由于资金有限就要少进2匹空调。
七、课后练习
1.数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是,众数是
2.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是.
3.数据92、96、98、100、X的众数是96,则其中位数和平均数分别是()
A.97、96B.96、96.4C.96、97D.98、97
4.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是()
A.24、25B.23、24C.25、25D.23、25
5.随机抽取我市一年(按365天计)中的30天平均气温状况如下表:
温度(℃)-8-1715212430
天数3557622
请你根据上述数据回答问题:
(1).该组数据的中位数是什么
(2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天
答案:1.9;2.22;3.B;4.C;5.(1)15.(2)约97天
【教学目标】
会推导平方差公式,并且懂得运用平方差公式进行简单计算。
经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。
情感、态度与价值观
通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。
【教学重难点】
重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。
难点:平方差公式的应用。
关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的'本质特征,是正确应用公式来计算的关键。
【教学过程】
一、创设情境,故事引入
【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事
【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。
【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?
【学生回答】多项式乘以多项式。
【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。
【问题牵引】计算:
(1)(x+2)(x—2);(2)(1+3a)(1—3a);
(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。
做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。
【学生活动】分四人小组,合作学习,获得以下结果:
(1)(x+2)(x—2)=x2—4;
(2)(1+3a)(1—3a)=1—9a2;
(3)(x+5y)(x—5y)=x2—25y2;
(4)(y+3z)(y—3z)=y2—9z2。
【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。
【学生活动】讨论
【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?
【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。
用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。
【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义。
【教师讲述】
平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,一切就变得容易了。现在大家来看看下面几个例子,从中得到启发。
例1:运用平方差公式计算:
(1)(2x+3)(2x—3);
(2)(b+3a)(3a—b);
(3)(—m+n)(—m—n)。
《乘法公式》同步练习
二、填空题
5、幂的乘方,底数______,指数______,用字母表示这个性质是______。
6、若32×83=2n,则n=______。
《乘法公式》同步测试题
25、利用正方形的面积公式和梯形的面积公式即可求解;
根据所得的两个式子相等即可得到。
此题考查了平方差公式的几何背景,根据正方形的面积公式和梯形的面积公式得出它们之间的关系是解题的关键,是一道基础题。
26、由等式左边两数的底数可知,两底数是相邻的两个自然数,右边为两底数的和,由此得出规律;