农业、工业和服务业统称为“三产”,2021年泰州市“三产”总值增长率在全省排名第一.观察下列两幅统计图,回答问题.
(1)2017—2021年农业产值增长率的中位数是%﹔若2019年“三产”总值为5200亿元,则2020年服务业产值比2019年约增加亿元(结果保留整数).
(2)小亮观察折线统计图后认为:这五年中,每年服务业产值都比工业产值高,你同意他的说法吗请结合扇形统计图说明你的理由.
答案
(1)2.8,96
(2)不同意,理由见解析
【分析】(1)2017—2021年农业产值增长率按照从小到大排列后,按照中位数的定义求解即可,先求出2019年的服务业产值,再用2020年的服务业产值增长率乘以2019年服务业产值;
(2)先从折线统计图分析,再从扇形统计图分析即可.
【详解】(1)解:∵2017—2021年农业产值增长率按照从小到大排列为:
2.3%,2.7%,2.8%,2.8%,3.0%,
∴中位数为2.8%,
2019年服务业产值为:5200×45%=2340(亿元),
2020年服务业产值比2019年约增加:2340×4.1%=95.94≈96(亿元);
故答案为:2.8,96
(2)解:不同意,理由是:从折线统计图看,每年服务业产值的增长率都比工业产值的增长率高,因为不知道每年的具体数量和占当年的百分比,所以这五年中,每年服务业产值都比工业产值高是错误的,例如:从扇形统计图看,2019年服务业产值占“三产”的比重为45%,工业产值占“三产”的比重为49%,服务业产值低于工业产值,
∴每年服务业产值都比工业产值高是错误的.
【点睛】此题考查了扇形统计图、折线统计图、中位数等知识,读懂题意,从统计图中获取有用信息,数形结合是解题的关键.
频数分布直方图的特点:①能够显示各组频数分布的情况;②易于显示各组之间频数的差别。
作直方图的目的有:作直方图的目的就是通过观察图的形状,判断生产过程是否稳定,预测生产过程的质量。1判断一批已加工完毕的产品;搜集有关数据。直方图将数据根据差异进行分类,特点是明察秋毫地掌握差异。2在公路工程质量管理中,作直方图的目的有:①估算可能出现的不合格率;②考察工序能力估算法③判断质量分布状态;④判断施工能力;
制作频数分布直方图的方法:①集中和记录数据,求出其最大值和最小值。数据的数量应在100个以上,在数量不多的情况下,至少也应在50个以上。我们把分成组的个数称为组数,每一个组的两个端点的差称为组距。②将数据分成若干组,并做好记号。分组的数量在5-12之间较为适宜。③计算组距的宽度。用最大值和最小值之差去除组数,求出组距的宽度。④计算各组的界限位。各组的界限位可以从第一组开始依次计算,第一组的下界为最小值减去最小测定单位的一半,第一组的上界为其下界值加上组距。第二组的下界限位为第一组的上界限值,第二组的下界限值加上组距,就是第二组的上界限位,依此类推。⑤统计各组数据出现频数,作频数分布表。⑥作直方图。以组距为底长,以频数为高,作各组的矩形图。
如图所示的图象所描述的是一辆小汽车沿一条高速公路行驶过程的图象,根据图象所提供的信息回答下列问题:
(1)求出速度v与t之间的函数关系式并指出这条高速公路的全长是多少?
(2)汽车的最大速度可以达到多少?
(3)汽车最慢用几小时可以达到?如果在3小时以内到达,汽车的速度应该不少于多少?
下列四个统计图中,用来表示不同品种的牛的平均产奶量最为合适的是()