算术平方根教学设计(共10篇)

【导语】下面小编给大家整理的算术平方根教学设计(共10篇),希望大家喜欢!

算术平方根教学设计

教材分析:

《算术平方根》是人教版七年级下第六章第一节,本节通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的。通过对这一节课的学习,既可以让学生了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性,将为学生学习算术平方根奠定基础。引入算术平方根的知识,要借助具体的生活情境,这样才能加深对引入平方根知识必要性的认识。注意引导学生发现被开方数与对应的算术平方根之间的关系。

本节课的开始就设置了一个问题情境,把这个问题情境抽象成数学问题就是已知正方形的面积求正方形的边长,这是典型的求算术平方根的问题。由于所选数字简单,可见其设计目的,并不着眼于计算,而在于巩固概念。因此本节课的关键是抓住算术平方根概念的本质特征,逐层深入,多个角度展示。

课标要求:

本节突出概念形成过程的教学,首先列举学生熟悉的例子,从生活问题中抽象出数学本质,引导学生观察、分析后归纳,然后提出注意问题,帮助学生把握概念的本质特征,再引导学生运用概念并及时反馈。同时在概念的形成过程中,着意培养学生观察、分析、抽象、概括的能力。在本节课中,我利用学生的已有经验,通过思考、讨论、探究等活动,使学生感受到做数学、用数学的价值。

策略分析:

根据教材内容和编排特点,为了更有效地突出重点、突破难点、抓住关键,本节课按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的原则,采用“自主探究法”和“引导发现法”为主,并根据学法指导自主性和差异性要求,让学生在探究过程中理解理解算术平方根的概念。

教学目标:

1、经历算术平方根概念的形成过程,会用根号表示算术平方根,并了解算术平方根的非负性。

2、会用平方运算求非负数的算术平方根,包括完全平方数的算术平方根和部分非完全平方数的.算术平方根。

教学重点:

理解算术平方根的概念。

教学难点:

根据算术平方根的概念正确求出非负数的算术平方根。

教学过程:

一、创设情境,导入新课

学校要举行美术作品比赛,小鸥想裁出一块面积为25dm2的正方形油布,画上自己的得意之作参加比赛,这块正方形油布的边长应取多少?

(设计说明:用教材的问题作为导入材料,能够和学生的课前预习活动对接,可以提高学生参与教学活动的广度,从学生熟悉的数学经验入手,提出简单的问题,激发学生自主学习的兴趣和积极性,也自然引入新课。)

二、自主探究,发现新知

自学教材40页内容,思考:

1、什么是算术平方根?怎样表示一个数的算术平方根?

2、1的算术平方根是多少?9的算术平方根是多少?16呢?怎样求一个正数的算术平方根?正数的算术平方根的结果是什么数?

3、0的算术平方根是多少?为什么?

4、负数有算术平方根吗?为什么?

(师生活动:学生自学教材,结合探究提纲思考、练习、举例、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生中间交流,掌握学情,为展示交流做准备。)

【设计意图】学生通过自主学习,经历观察、比较、抽象、概括的思维过程,理解算术平方根概念的实质,建立初步的数感和符号感,提高学生抽象思维水平。

三、学生交流,展示归纳

1、自主探究展示:

(1)算术平方根的概念和表示方法。

(2)求1,9,16,0的算术平方根。

2、合作探究展示:

负数没有算术平方根,因为没有任何数的平方的结果是负数。

3、归纳展示:

(1)一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。记读作“根号a”,a叫做被开方数。

(2)0的算术平方根是0。

4、举例展示:(学生举出算术平方根的例子。)

(师生活动:教师结合巡视检查,让中差生先展示,充分的暴露问题,再由中等生或优等生纠错、说理、补充、评价、修正。)

【设计意图】通过展示交流,培养学生的“自主、合作、探究”能力,让学生体验“互逆”的数学思想方法,积累数学活动经验。

四、类比练习,巩固提升

(师生活动:学生结合例题的格式解答,抽3名学生上讲台板书,其他学生自主解答,从解题的过程、结果、格式等方面进行评价、纠错、修订、完善,教师给予适当的引导、点拨、评价。)

练习1:课本41页练习1题。

(师生活动:抽学生回答,其他同学评价、补充、修订。)

练习2:课本41页练习2题。

(师生活动:抽学生上黑板完成,发动学生相互评价补充,教师重点提醒题,强调乘方的算术平方根的计算方法。)

练习3:下列各数有算术平方根吗?如果有,求出来;如果没有,请说明理由。

(师生活动:学生独立解答,学生代表板书,学生相互评价,教师重点提醒题,加深对概念的理解和应用。)

(师生活动:抽学生回答,发动其他同学评价、补充、修订。)

【设计意图】学生通过口答、计算、选择,加深对算术平方根的概念及性质的理解和应用,提高学生分析问题和解决问题的能力。

五、回顾反思,强化提升

1、这节课你学到了什么?

2、你对大家有哪些建议或提醒?

(师生活动:学生自主小结,同学相互补充评价,教师补充完善。)

【设计意图】引导学生从知识与技能、过程与方法、情感态度价值观的三维目标中总结自己的收获,把握本节课的核心内容,进一步体会互逆运算的数学思想方法。

六、当堂检测、知识过关

绩优学案32页巩固训练的1、2、3、4(1)(3)小题。

(师生活动:学生独立完成,教师手拿红笔进行选择性批阅,教师出示答案,学生自我评价,师生共同评价。)

【设计意图】通过4测试题,再次加深学生对算术平方根的概念的理解和运用,及时反馈学生对本节课知识的掌握程度。

七、布置作业

1、必做题:习题6.1复习巩固第1、2题。

2、选做题:绩优学案32页典例探究3和巩固训练的5题。

【设计意图】体现课标理念:“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。”必做题面向全体,选做题使学有余力的同学有发展的空间。

【课后反思】

本节课的教学设计,力求为学生创造一种宽松、和谐、适合学生发展的学习环境,创设一种有利于思考、讨论、探索的学习氛围。整个教学环节层层推进、步步深入,注重调动学生思维的积极性,把知识的形成过程转化为学生为主的过程,重视学生的自主探索、亲身实践、合作交流。学生在活动中理解掌握基本知识、技能和方法,使学生在获得知识的同时提高了兴趣、增强了信心、提高了能力。

由于这节课是一节概念课,关于数学概念课的教学有它特殊的要求,其中,最重要的一点就是充分展现概念的形成过程,所以,如何引导帮助学生建立这个概念,并对它的内涵和外延有深刻、明确的理解和认识,是本节课的重点。本节课的内容看起来简单,但对学生来讲,要想真正理解这个概念有很多困难,如果仅仅就概念讲概念,如果没有必要的知识联系和迁移,学生对这个概念只能形式化的模仿运用,无法真正掌握。过去对这个问题重视不够,正是导致学生在这个简单的问题上经常犯错误的主要原因。为此,我在设计这节课教学时,把重点就放在这里。

(1)创设情景,自然导入

首先通过一个问题情境,引出面积求边长的问题,接着又让学生通过填表的方式,计算几个不同面积的正方形的边长,使学生感受到这些问题与以前学过的已知边长求面积的问题是一个相反的过程,即学生较为熟悉的互逆运算,并由此指出,这些问题抽象成数学问题就是已知一个正数的平方求这个正数的问题,并在此基础上给出算术平方根的概念,这样就让学生通过具体活动,在对算术平方根有些感性认识的基础上给出这个概念。培养学生从数学的角度观察生活,思考问题的能力。

(2)学生在积极参与教学活动中自觉的提高了认知水平。

算术平方根的学习体现了由特殊到一般的认识过程,通过一些具体数的计算,然后放到一般情况下理性思考,这样就为学生接受新知铺设了台阶,符合学生的认知规律。为了使抽象的概念具体化,通俗易懂,本节由学生列举的例子,培养学生的发散思维,也增强学生运用数学的意识。

算术平方根教学反思

这节课主要让学生理解并掌握算术平方根的定义、会求一个正数的算术平方根。利用多媒体教学,首先分设问题情境(1)若一个正方形的面积为25,则它的边长是多少?从而让学生体会数学与生活的联系,激发学习的兴趣。再根据问题引出算术平方根的定义,学生较容易理解5是25的.算术平方根。通过这样的具体例子,帮助学生深刻地理解所学的内容。其次,引导学生谈收获,并相互交流,培养学生归纳的能力与养成总结的良好学习习惯,给学生表达的机会,从而再次巩固所学内容。

通过本节课学习,大部分学生能较好的掌握所学的知识,但有一部分学生存在以下错误:

1、对算术平方根的的概念不理解,以至不会求一个正数的算术平方根。

3、对开平方和求算术平方根运算相混淆。

4、多让学生讲出自己的理解和思路,培养学生的数学语言表达能力。

5、在教学中以基础知识学习为主,面向全体学生,大面积提高教学质量。

本节的教学效果不错,因为本节教学过程中体现了几大亮点:

一、学生动手操作。

通过剪一剪、拼一拼,把两个面积为1的小正方形剪拼成一个大正方形,从动手操作中学生发现了大正方形的边长原来就是小正方形的对角线的长,从而引发了探究有多大的欲望。这样教学的作用是通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,建立初步的空间观念,发展培养了学生的形象思维。

二、探讨“有多大?”。

三、探究被开方小数点移动规律。

通过计算器完成课本71页‘探究’的填表后,学生小组讨论得出被开方数的扩大和缩小与算术平方根的扩大和缩小之间的规律。让学生体验了计算器的重要性,以及通过讨论找到规律的成功喜悦感。

四、运用逼近法解决实际问题。

《算术平方根》教学反思

学生在学习习近平方根和算术平方根时有两个不习惯,一个是正数有两个平方根,即正数在开平方运算有两个结果,这与学生过去遇到的运算结果唯一的情况有所不同;另一个是负数没有平方根,即负数不能进行开平方运算,这也是前面加、减、乘、除、乘方五种运算中一般不会遇到的(0不能作除数的情况除外),所以今天的教学对学生的学习很为关键,教学时,应通过较多的'实例说明这两点,并在以后的教学中继续强化这两点。

开平方运算与平方运算互为逆运算,这是求平方根的依据,所以互逆关系要能够理解掌握,本课利用六种运算整体认识新知识,使学生形成正迁移,符合学生的认知规律,学生受到了好的学习效果。

算术平方根第二课时教学反思

本节课是算术平方根的第二课时,教学目的是能用逐步逼近法估计一个正数的算术平方根的大致范围,并了解无限不循环小数的特点;会用计算器求一个数的算术平方根,会用有理数估计(无理)数的大小;探索被开方数扩大(缩小)与算术平方根扩大(缩小)的.规律。

在问题1中,通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,建立初步的空间观念,发展形象思维。通过研究活动,让学生感受到生活中确实存在着不同于有理数的数,体会数学与人类生活的密切联系,使学生对数的认识进一步加深,为有理数系到实数系的过渡作好铺垫。问题2中探究到底有多大?我设计了两种方法:用计算器计算;用逐步逼近法估计的大小。

再联想上节课在数轴上表示,学生明白了的大概值,能够激发学生探求新知的欲望,培养学生的探索精神。同时加强学生的估算能力,渗透估算的思想和方法,感受两个方向无限逼近的数学思想,发展了学生的抽象思维。通过用计算器求算术平方根,使学生进一步体会无限不循环小数的存在性,发展数感,培养学生运用现代化信息技术解决实际问题的能力,能够借助于新技术去学习数学。

在问题4的探究中,利用计算器求出一些数的平方根后,让学生观察总结所发现的规律,学生积极踊跃,但表达有一些困难,此时老师积极参与,给以指导,学生在同学的补充和老师的提示下得出了规律,而且能够用规律来解决问题,很快解决了问题5,体验了合作交流发现规律的过程,充分体现了新课标的要求,培养应用意识和能力。有了估值的能力,问题6就容易解决了。本节课的设计能够以问题为主线,让学生去发现,去体验,使得他们的思维能力、情感态度等都能上一个台阶。

平方根教学设计

师:请同学们把准备好的两个正方形拿出来,我们一起来看看这个问题(出示幻灯片)

生:(学生分小组拿出事先准备好的正方形按要求操作)

师:(教师下去参与小组活动,由于学生事先预习了,有的同学按书上的虚线操作成功)

生:老师我拼出来了。

师:好,给大家演示一下。

生:(很高兴站起来演示,其他学生也一起比划着)。

师:那你拼出的大正方形的边长是多少?

生:大正方形的面积是2,边长就是根号2。

师:回答得非常好,你们明白了吗?

生:明白了。

师:我也给你们演示一下(课件演示)。那你们知道根号2有多大吗?

生:(按着计算器)1.14142143562

师:这是一个近似值,受计算器的位数限制只显示了12位,我们一起来看看下面的方法(教师一边写一边说、一边问)

师:(写完后)根号2是个无限不循环小数,有多大?

生:比1.4大,比1.5小。

师:请看例题(出示课件)

生:(学生独立完成作业3,教师巡视,个别指导)

师:要注意计算器上显示的是近似值,注意每道题目具体的精确度要求,(对答案)。

师:大家看课本第71页的探究。

生:(用计算器计算并记录结果)

师:你们发现了什么规律?

生1:好像“被开方数越大,它的算术平方根也越大”。

师:(一边板书一边问)还有吗?

生2:小数点的位数间也有变化。

师:具体点。

生2:被开方数的小数点每向右移动两位,它的平方根的小数点就向右移动一位。

生3:我也发现了:被开方数的小数点每或向左移动两位,它的平方根的.小数点就或向左移动一位。

师:还有补充吗?

生:没有了。

师:同学们观察得非常仔细,表达也很清晰。能直接写出根号30的值吗?

生:不能。

师:为什么?

生:位数的变化是两位两位的。

师:好。请看例题:(出示幻灯片)

生:(学生思考,动手解题)

师:(教师巡视,让先做完的在黑板上写,然后作评讲)

师:这里写的很好,50大于49,根号50大于7,大于21,结果小明说的不对,小丽不能裁出符合要求的纸片。所以我们不能想当然,数学就要用数字说话。

师:(师生一起小结,学生填在课堂练习上)今天我们收获了什么?

生:(学生填在课堂练习上,完成作业6)

师:下面进行课堂检测。

生:(完成课堂检测)

师:下课。

生:老师再见。

师:同学们再见。

第一课时算术平方根的教学反思

1、导入趣味化,唤起学生已有知识经验。

利用“神舟”七号飞船载人航天飞行取得圆满成功,导入全章。使学生感受到“神七”的成功发射这一伟大壮举,竟然与我们将要学习的本章知识有着密切的联系,激发起学生的好奇心和学习兴趣,感受到学习算术平方根的必要性。

2、分设问题情境

(1)要剪出一张边长是5分米的正方形纸片,它的面积是多少?(2)裁出一块面积为25平方分米的正方形画布,算出这块正方形画布的边长是多少吗?从而让学生体会数学与生活的'联系,激发学习的兴趣。再根据问题引出算术平方根的定义,学生较容易理解5是25的算术平方根。通过这样的具体例子,帮助学生深刻地理解所学的内容。

3、通过探究与操作,引导学生谈收获,并相互交流,培养学生归纳的能力与养成总结的良好学习习惯,给学生表达的机会,从而再次巩固所学内容。

思维算术教学设计模板

教学目标:

1.理解首数、尾数、补数等词语的含义.

2.掌握首同尾补的两位数乘法的计算方法。

3.通过计算提高学生的计算能力与表达能力,发展学生的思维。

教学重点:掌握首同尾补的两位数乘法的计算方法。

教学难点:总结首同尾补的两位数乘法的计算方法

(一)师生对口令游戏,明确补数的含义

补数:两数相加等于10(100),这两个数互为补数。如:6+4=10,即6是4的补数,4也是6的补数。6和4互为补数。

(二)揭示首同尾补的两位数乘法

在互为补数的两个数的前面添上一个数,使它成为两个不同的两位数,观察这两个数有什么特点?学生说出几个首同尾补的两位数。教师:只要你们说出首同尾补的两位数,老师就能写出他们的.积,学生说,教师写。学生验证的得数正确性。

(三)观察算式,发现规律。

1.明确:头、尾的含义

2.两位数乘两位数的乘法,两个因数的首位数相同,尾数互补时,其计算的方法是:头加1,然后两个首位数相乘之积为前积,两个尾数相乘之积为后积。两个积依次相连即是得数。如:23×27=621,计算程序是:先在被乘数的首位数上加1,然后两个首位数相乘3×2=6,为前积;两个尾数相乘3×7=21,为后积,两积依次相连即是得数621。

口诀是:头加1后头乘头,尾乘尾,两积相连(尾数之积是一位数时,前面添0补位)

3.开火车出题、说得数

(四)本法适用于尾数是5的两位数平方计算。

学生出题、说得数

(五)本法适用于整数,也适用于小数计算小数乘法先按照

整数乘法的法则求出积;再看被乘数和乘数一共有几位小数,就从积的右边起数出几位,点上小数点;如果小数的末尾出现0时,根据小数的基本性质,把小数末尾的0划去。

(六)本法对于被乘数首尾互补,且乘数首尾相同的两位数乘法也适用,如:37×44

尾同首补的两位数乘法又该如何计算呢,我们以后继续学习。如:23×83

(七)小结:我们学习了什么内容,你有哪些收获?

初一平方根教学设计

七年级平方根教学反思平方根是实数的起始课,又是学习实数的第一节课,内容涉及的知识点不多,知识的切入点比较低,而新课程将其建立在以学内容有理数的基础上,加强与前面的知识点的联系。我选择这节课,突出实数与有理数的联系。

针对七年级学生有一定的自学、探索能力小。借助学生学习的优势,脑和手充分动起来。学生间互相探讨,积极性也被充分调动起来。

让学生通过实际例子,体会算术平方根的定义,通过剪正方形得出面积为2的大正方形的边长,从而解决了生活实际问题,让学生体会生活中的数学。

本节课的不足:1.没有充分利用已有的图形调动学生的积极性,在做面积为2的大正方形时,我没有让学生看书,这样就在我的讲解中度过了,如果让学生先看书然后在动手操作,那样学生的成就感就得到了体现。2.学生的层次不同,对于基础好的就吃不饱,对于C组的同学满足不了他们的学习需求。

建议:把下面的平方根先上,那样在解方程时就不会出现那么多的正负的问题。

解:用计算器求1360.57平方根的步骤如下:

因为计算结果要求保留4个有效数字,

小结:这里要注意一个正数的平方根有两个,且互为相反数,用计算器求的式这个数的算术平方根。

例5.用计算器求值:

分析:本题是由加、减、乘方、开方运算的混合运算题,由于计算器能自动识别运算顺序,故按键顺序与书写顺序完全一致。

解:按键的顺序是:

显示612.65685

≈612.7

练习:

求下列正数的算术平方根:

(1)49;(2)0.81;(3)1.5376;(4)5;(6)260;

(7);(8)101.38

六.总结

利用计算器求解既快又精确,操作时要严格按照步骤执行。特别注意要用到第二功能键,首先要先按“2F”在按需要的键。由于各种计算器的键的功能各不相同,因此要注意操作顺序,查看说明书熟悉各键的具体功能。

THE END
1.初中数学平方根计算题专题训练含答案详情.doc20、 求值: 21、 求值: 22、 求值:=参考答案=一、计算题1、 2、 解:原式=1+2-2=1.3、 根据绝对值、平方根、平方的定义分别计算,然后再进行加减运算;原式=5+49=0;4、 6分 8分5、 0.6; 6、 7、 8、 9、 ; 解:原式= 3-3+10-6 =43分10、 =511、 解: 原式120138× 3分120131 4分https://m.renrendoc.com/paper/205200872.html
2.平方根计算题及答案平方根计算题100道题平方根计算题下载淘豆网为你提供平方根计算题及答案、平方根计算题100道题和平方根计算题下载的服务,相当于平方根计算题大全,这里你可以找到所有关于平方根计算题的内容。https://www.taodocs.com/topdoc/96949-0-0-1.html
3.很简单的开方运算题,开平方,精确到0.01:0.46254,二十五分之八相似问题 怎样计算开方 求20道平方根的纯计算(要答案) 30道关于平方根计算题(纯计算) 特别推荐 热点考点 2022年高考真题试卷汇总 2022年高中期中试卷汇总 2022年高中期末试卷汇总 2022年高中月考试卷汇总 二维码 回顶部?2021 作业帮?联系方式:service@zuoyebang.com?作业帮协议https://www.zybang.com/question/197a7d187009c77af486908308270e8c.html
4.平方根的计算题!(2个)=3 - 2 + |-4| - 5 =3 - 2 + 4 - 5 =0 第二题 因为绝对值和平方根都不能是负数,https://wenwen.soso.com/z/q538351056.htm
5.小绵羊琳琳初一数学平方根计算题,此类题型有一套特有的解题方法初一数学平方根计算题,此类题型有一套特有的解题方法,必须掌握热度:7年份:2021首播时间:20210407语言/字幕:汉语更新时间:20210407简介:小绵羊琳琳上传的教育视频:初一数学平方根计算题,此类题型有一套特有的解题方法,必须掌握,粉丝数175,作品数185,免费在线观看,视频简介:初一数学平方根计算题,此类题型有一套特有的解题https://www.iqiyi.com/v_morb5cwfqg.html
6.请出十道初二上册实数平方根立方根的计算题,光计算,不要其他题,3.立方根是它本身的数是___ 4.平方根与立方根相等的数是___做做习题吧:1.-27的立方根与根号81的平方根之和是?2.3√10^6 (这个是10的6六次方开3次方根)是多少?3.-3√-0.027 4.若 x,y是实数,且9x∧2(9x的平方)—6x +1=- |3x- y+5| ,求 13x^2- y 的平方根.判断题:1.×2.×https://qb.zuoyebang.com/xfe-question/question/9b04d58b86a67af0322d0256a5939cb2.html
7.初一数学题及答案解析6篇(全文)专题:计算题. 分析:由(﹣3)2=9,而9的算术平方根为=3. 解答:解:∵(﹣3)2=9, ∴9的算术平方根为=3. 故选A. 点评:本题考查了算术平方根的定义:一个正数a的正的平方根叫这个数的算术平方根,记作(a>0),规定0的算术平方根为0. 3.在实数﹣,0,﹣π,,1.41中无理数有() A.1个B.2个C.3个Dhttps://www.99xueshu.com/w/filewth8pt6e.html
8.平方根的计算及完全平方数的判断51CTO博客【一题多解】平方根的计算及完全平方数的判断 1. 平方根的计算 使用Babylonian method 方法(https://en.wikipedia.org/wiki/Methods_of_computing_square_roots)进行计算: def babylonian(s, x0, n_iter): x = x0 for _ in range(n_iter):https://blog.51cto.com/u_15127644/3466641
9.剑指Offer计算X的平方根——两种解法x的平方根小数计算x的平方根,保留8位小数。 输入:5 输出:2.23606797 解题思路 本题主要考察对x求平方根的数学思想。在大多数语言中都提供了数学方法的实现。那么要求一个数的平方根,是怎么实现的呢?实际上求平方根的算法方法主要有两种:二分法(binary search)和牛顿迭代法(Newton iteration) https://blog.csdn.net/ARPOSPF/article/details/110739118
10.计算:()平方根众享题库学科测评首页 >> 题库 >> 九年级 >> 数学 相关的在线测评卷运算测试—数的运算计算:( ) A.32 B.36 C.48 D.44 答案 正确答案:D 知识点:平方根 立方根 二次根式的化简 略 下载次数:0 WORD格式(含答案版下载 无答案版下载) <<上一题 下一题>> https://c.xxt.cn/quest/104333.html
11.计算或化简:(1)(2).[解析]试题分析:(1)先算术平方根.绝对值.0计算或化简: . [解析]试题分析:(1)先算术平方根.绝对值.0指数幂与负指数幂.再算加减, (2)分别计算单项式乘以多项式和完全平方.再合并同类项即可. 试题解析:原式==http://www.1010jiajiao.com/czsx/shiti_id_9b692f2d092db29bf8b082f96f5f754d
12.刷leetCode算法题+解析(七)X的平方根 题目:实现 int sqrt(int x) 函数。计算并返回 x 的平方根,其中 x 是非负整数。由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去。 示https://www.jianshu.com/p/b8963329c9b8