数学小数的性质教案

作为一位杰出的老师,就不得不需要编写教案,借助教案可以提高教学质量,收到预期的教学效果。教案应该怎么写才好呢?下面是小编整理的数学小数的性质教案,仅供参考,大家一起来看看吧。

教学内容

人教课标版小学四年级下册第38、39页的内容:小数的性质

学情分析

小数的性质是任教版义务教育教科书四年级下册第38、39页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。

教学目标

知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质。

过程与方法:培养学生观察、比较、抽象和归纳概括的能力。

情感态度与价值观:激发学生积极主动的合作意识和探索精神,体验数学问题的探究性和挑战性,从而激发学习数学的兴趣,积极主动的参与数学活动。

教学重难点

重点:理解和掌握小数性质的含义。

难点:小数基本性质归纳的过程。

教法与学法

1、利用迁移规律,让学生从形象思维逐步过渡到抽象思维,通过直观推理、自主探究、合作交流让学生理解和掌握小数的性质,提高学生运用知识进行判断、推理的能力。

2、让学生体验数学问题的探究性和挑战性,激发学习数学的兴趣,主动参与教学活动。

3、培养学生共同合作,相互交流的学习方法。

教学准备

多媒体课件

教学过程

一、复习旧知,导入新课

1、师:同学们,上节课我们学习了什么?(小数的意义)那么在学习新知识之前,让我们一起来复习一下上节课的内容吧!

2、《西游记》同学们都看过没有,那么你们知道《西游记》中都有那些人物(学生自由回答)。

课件展示:有一天,他们口渴了,唐僧要把三根甘蔗分给三个徒弟吃,事先他把甘蔗分别装进三个袋子里,上面标注着长度:0.l米、0.10米、0.100米,馋嘴的八戒抢先一步说:“我的肚子大,我吃长的。”说着拿回了标有“0.100米”的袋子。沙和尚好不服气,上前对师傅说:“八戒好吃懒做,长的应该让给大师兄悟空吃。”悟空笑了笑说:“两位师弟别吵了,无论哪个袋子都一样呀!”唐僧听了悟空的话微笑着点了点头。

师:你知道唐僧听了悟空的话为什么会微笑着点了点头?学了今天的`知识你就知道为什么了。

板书课题:小数的性质

设计意图:联系生活实际,达到知识的迁移。

二、提出问题、探索新知

1.出示例1:

⑴师:同学们,这把尺子多长呢?(10厘米)你们还能不能用不同的长度单位来表达出它的长度呢?老师点名提问个别学生来回答。

学:1分米、100毫米。

⑵师;请同学们运用所学有关“小数的意义”的知识,把它们改写成用“米”作单位的小数。

学生独立完成,教师巡视指导个别不会的学生。

⑶教师指名个别学生回答,并对个别表现好的学生给予表扬。

生1:0.1米是1/10米,就是1分米

生2:0.10米是10/100米,就是10厘米

生3:0.100米就是100/1000米,就是100毫米

师:现在老师有个问题请大家帮忙解决一下,0.1米、0.10米和0.100米的大小如何呢?

学生回答,教师总结。

板书:1分米=10厘米=100毫米

0.l米=0.10米=0.100米

设计意图:学生根据小数的意义,从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。

⑷观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?

根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”。

教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简.小数中间的0不能去掉.

师质疑:那整数有这个性质吗?

学生分小组讨论,并举例证明得出结论。

(师强调出小数与整数的区别)

设计意图:把静态的知识结论转化为动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固,不但知其然,而且知其所以然。同时,还培养了学生归纳概括的能力。

2、教学例2

(1)多媒体出示38页例2:比较0.30与0.3的大小

师:任写一个数,在它的末尾添上一个‘0’或者两个‘0’,用自己的方法验证他们的关系是否相等。

(2)师:刚才同学们用自己的方法证明了我们的发现,想不想知道老师是如何验证的?

①老师将两个同样大小的正方形平均分成了10份和100份,把其中的30份写成小数就是0,30,另一个正方形取其中的3份就是0.3,将两个正方形移动,重合比较,会是什么结果?

②请大家闭上眼睛想象一下,再睁开眼睛观察屏幕,和你想象的一样吗?可以写一个怎样的等式?

汇报结论:0.3=0.30

(3)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)

设计意图:学生的思维从形象思维逐步过渡到抽象思维,达到突破难点的目的。放手让学生探索、验证,适时引导学生提出问题,并解决问题。

三、课堂检测

1、运用小数的性质时应注意什么?

0.70(去掉末尾的0,大小会变化吗),2.07(去掉中间的0会怎样),0,7(末尾加个0会怎样)?

提示:根据小数的性质,只有小数末尾的“0”去掉之后,才不会改变数的大小。小数中间的“0”和整数部分的“0”不能去掉,因为那样小数其他数位上的数就发生了变化。

2、判断

(1)小数的末尾添上“0”或去掉“0”,小数的大小不变,意义也不变。()

(2)0.508去掉小数部分的0,这个小数的大小不发生变化。()

(3)因为2和2.0相等,所以它们都是整数。()

(4)0.8与0.80大小一样,计数单位也一样。()

3、下面哪些小数中的“0”去掉后,小数的大小没有发生变化?

7.03、4.90、8.10、0.02、3.70

4、按要求说出一个数。

①所有“0”都不能去掉。

②所有“0”都能去掉。

③既有能去掉的“0”,又有不能去掉的“0”。

5、谁能只动两笔就可以在5、50、500之间画上等号?

5=50=500

四、本课小结

通过这节课的学习,你有哪些收获?

五、作业布置

课本41页练习十:1、2、3

板书设计

小数的性质

1分米=10厘米=100毫米

0.1米=0.10米=0.100米

小数的末尾添上或去掉“0”,小数的大小不变。

教学目标:

1、初步理解小数的基本性质,并应用性质化简和改写小数。

2、运用猜测、操作、检验、观察、对比等方法,探索并发现小数的性质,养成探求新知的良好品质。

3、感受透过现象看本质的过程以及数学在实际生活中的重要作用,体验问题解决的情趣。

教学重点:让学生理解并掌握小数的性质。

教学难点:能应用小数的性质解决实际问题.

教学过程:

(一)、创设情境,引导探索

1师:夏天的天气非常炎热,孩子们你们爱吃雪糕吗?老师对学校附近雪糕的价格做了一个小调查,你们想了解一下吗?老师了解到校门口左边的商店雪糕的价格是0.5元,右边一家则是0.50元,那你们去买的时候会选择哪一家呢?为什么?

师:为什么0.5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来学习小数的性质。(板书课题:小数的性质)

二、探究新知、课中释疑

1.教学例1

比较0.1m0.10m0.100m的大小

师:想一想括号里填上什么单位,才能使等式成立?

1()=10()=100()

生汇报(重点讲解:1分米=10厘米=100毫米)

你能把它们改写成用米做单位的小数的形式吗?

根据学生回答归纳演示:1分米是1/10米,写成0.1米

10厘米是10个1/100米,写成0.10米

100毫米是100个1/1000米,写成0.100米

并板书:01米0.10米0.100米

那0.1米、0.10米、0.100米之间大小有什么关系呢?

3)指导看黑板:

4)观察比较:教师指着“0.l米=0.10米=0.100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?

5)根据学生的回答板书:在小数的末尾添上0,小数的大小不变。再标出思考箭头,让学生从右往左观察,又发现什么规律,补充板书:小数的末尾去掉“0”,小数的大小不变。

是不是所有的小数都有这个性质呢?这是不是一个特例?我们还需再验证一下。

2.教学例2

比较0.3和0.30的大小

1)师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

2)师:想一下你用什么办法来比较这两个数的大小呢?(利用学具,小组讨论合作)

3)在两个大小一样的正方形里涂色比较。

4)师质疑:小数由0.3到0.30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的.大小没有变,得出0.3=0.30。)

5)师:同学们,你们真了不起,通过动手操作验证得出了这个性质,这就是我们今天学习的内容-小数的性质(课件出示)

小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

6)认真读这句话,你认为那些字是非常关键或者必不可少的?为什么?

生:末尾,因为中间的0是不能随意去掉的,去掉后就改变了小数的大小。

3.小数的化简

师:根据小数的性质,当遇到小数末尾有0时,一般可以去掉末尾的0,这就是小数的化简,你想试试看看吗?(课件出示例3)

把0.70和105.0900化简.

105.0900中“9”前面的“0”为什么不能去掉?

(0.70=0.7;105.0900=105.09)

教师强调:末尾和后面不同。

师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)

4.小数的应用

1)师:利用小数的性质不仅可以化简小数,有时根据需要,可以在小数的末尾添上0;还可以在整数的个位右下角点上小数点,再添上0,把整数改写成小数的形式,这就是小数的改写,下面我们学习例4

2)不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数.学生独立完成,全班共同订正。

(0.2=0.200;4.08=4.080;3=3.000)

思考:“3”的后面不加小数点行吗?为什么?

3)师:完成教材39页“做一做”的第1题(学生独立完成,全班订正)

三、巩固深化,拓展思维

师:同学们的表现真棒,为了加大难度,老师设计了闯关游戏,你们有信心接受老师的挑战吗?

挑战一:判断

挑战二:连线

挑战三:智力大比拼

四、课堂小结

这节课你有哪些收获?

五、布置作业.

完成练习十1-3题。

板书设计:

0.3=0.30

小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。

1、理解并掌握小数的性质,正确理解“小数末尾”的含义,并会用小数的性质将小数化简和把一个数改为指定小数位数的小数。

2、在引导学生发现小数性质的过程中,培养学生的观察,概括和语言表达能力。

3、在数学探究活动中树立学习数学的信心和兴趣。

教学重点:小数的性质。

教学难点:理解小数的性质。

教具学具准备:课件、练习纸。

一、创设情境,激发兴趣

师:同学们,今天我们请位老朋友和大家一起上课,看看他是谁?(出示孙悟空图片)孙悟空的兵器是什么?(金箍棒)我们知道孙悟空的金箍棒,能长能短,变化无穷,下面我们来让它变一变,金箍棒现在长度是1米,我在1的末尾添上1个0,变成10米,我来喊“金箍棒”,你们喊“变”,看它怎么变(动画演示金箍棒1米变成10米);在10的末尾添1个0,变成100米(动画演示金箍棒10米变成100米)。有意思吧!现在把100末尾的两个0去掉,变成1米(动画演示金箍棒100米变成1米);用小数来试一试,输入0.1米,在0.1的末尾添上1个0,变成0.10米(动画演示金箍棒0.1米变成0.10米),啊,怎么没反应。再在0.10的末尾添上2个0,变成0.100米(动画演示金箍棒0.10米变成0.100米),啊,还是没反应,这是怎么回事?谁想说说看。

生1:法术失灵了。

生2:0.1,0.10,0.100米这三个长度一样长。

老师板书:0.1米,0.10米,0.100米

二、主动探素,体会领悟

1、初步感知小数的性质。

师:如果你认为这三个长度相等,用你学过的知识解释一下,它们为什么相等,如果你对这三个长度相等有疑问,就把你想到的东西写下来。

拿出老师提供的空白练习纸,把你的想法写下来。

(1)学生动手写下来。

(2)学生汇报。

生1:因为0.1米=1/10米=1分米,0.10米=10/100米=10厘米,0.100米=100/1000米=100毫米,而1分米=10厘米=100毫米,所以0.1米=0.10米=0.100米。

生2:因为0.1米里有1个1分米,0.10米里有10个1厘米,0.100米里有100个1毫米,而1个1分米、10个1厘米、100个1毫米相等,所以0.1米=0.10米=0.100米。

老师适时板书:0.1米=0.10米=0.100米。

(3)观察0.1=0.10=0.100初步认识小数的性质。

师:0.1米=0.10米=0.100米,三个数的单位相同,也就是0.1=0.10=0.100(板书),看一看,你发现了什么?和你同桌说一说。

生1:在小数的后面加上一个0或加上两个0,小数大小是一样。

生2:在小数的末尾添上0,小数大小不变。

生3:在小数的末尾去掉0,大小是一样的。

2、深化认识小数的性质。

(1)纯小数中比一比

师:确实是这样的,是不是其它小数也有这样的特点呢?这样吧,你在心中想一个这样的数,拿出1号练习纸,把你想的小数表示出来,比一比它们是否有这样的特点,当然你也可以用其它的办法比一比。

练习纸:

两个大小相等的正方形,一个平均分成10份,另一个平均分成100份。

三个大小相等的正方体,分别平均分成10份、100份、1000份。

生动手写小数,涂一涂,比一比,师适时板书。

(2)混小数中比一比

师:同学们,你们写的小数是不是也有这样的特点?下面看看大屏幕上的小数是不是有这样的特点?

出示一组混小数,让学生写小数,比一比。

师:大屏幕上的涂色部分应该用哪两个小数来表示?

生:1.2和1.20

师:它们相等吗?

生:看涂色部分是一样大的。

师动态演示两个阴影部分相等。师:你还能举出这样的`例子吗?

生举例:如1.5=1.50,2.6=2.60

师:还能说吗?(能)这样的数说得完吗?(不能)能说这么多,你能说出这么多这样的小数,说明你发现了某种规律,这样吧,你把你的发现和你的同桌说一说。

(3)小结小数的性质,揭示课题。

生1:小数的后面无论添上几个0,它都不变。

生2:小数的末尾添上0,去掉0,大小都不变。

根据学生的汇报完善,归纳,总结出小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

师:这就是我们今天来学习的内容:小数的性质(板书课题)

3、探究小数性质的内涵

师:下面请看到大屏幕,

这是我们熟悉的数位顺序表,如果一个整数,在它的末尾添上0,那它表示的大小就不同了,如5,变成50,同样在整数的末尾去掉0,它表示的大小也不同了,如700;如果是一个小数,在它的末尾添上0,或去掉0,它的大小就不变,如0.3变成0.30,0.300,15.20xx变成15.2。(借助数位顺序表,动画演示添0,去0的过程)

4、教学小数性质的应用

(1)化简小数

师:现在脑子里想一个数,想一想,哪些0可以去掉,哪些0不能去掉?

生汇报,如:109.900中末尾的2个0可以去掉。

师:通过刚才的学习,我们可以把小数末尾的0去掉使小数更简洁,这个过程我们称为把小数化简(板书:化简),

出示例3,化简小数:0.70105.0900

生独立完成,汇报,师讲评。

0.70=0.7105.0900=105.09

(2)改写小数

师:根据小数的性质我们可以去掉小数末尾“0”,也可以在小数末尾添上“0”,有时我们需要把一个数改写成指定小数位数的小数。(板书:改写)

出示教学例4,不改变数的大小,把下面各数写成三位小数。

0.24.083

三、应用新知、解决问题。

1、做一做

(1)化简下面各数。

0.401.8502.9000.08012.000

(2)不改变数的大小,把下面各数写成三位小数。

0.930.045.48.1814

2、辨一辨:

因为0.2=0.20,所以0.2和0.20没有区别。

3、填一填

把0.9改写成计数单位是千分之一的数是(),把800个0.001化简是()。

四、总结交流

通过本节课的学习,你有什么收获?

小数的末尾添上“0”或去掉“0”,小数的大小不变。

1分米10厘米100毫米

0.1=0.10=0.100

1.2=1.20

教学内容:

苏教版第八册第117-118页例1-例4,“练一练”,练习二十四1-6题。

1、理解并掌握小数的性质;

2、能运用小数的性质进行小数的化简和改写;

3、培养学生对所学知识的归纳概括,分析综合及灵活运用的能力。

教学重点:

教学难点:

在小数部分什么位置添“0”去“0”,小数的大小不变,以及“变”与“不变”的辨证统一关系。

教学设想:

通过直观、推理让学生充分感知,然后经过比较归纳,最后概括小数的性质,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、概括新知、应用新知、巩固和深化新知的目的。

一、导入新课

在商店里,经常把商品的标价写成这样的小数:手套每双2.50元,毛巾每条3.00元。这里的2.50元、3.00元分别是多少钱(2.50元是2元5角,3.00元是3元)为什么能这样写呢这是小数的一个重要性质,是我们今天要学习的内容,并板书“小数的性质”。

二、讲授新课

1、研究小数的性质

(1)(板书“1”)师:在“1”的`末尾依次添上1个“0”、2个“0”,数的大小变化了吗怎么变你能不能在括号里填上合适的单位名称,使下面的等式成立

1()=10()=100()

得出:1元=10角=100分

1米=10分米=100厘米

出示米尺,1分米是1/10米,可写成怎样的小数(0.1米);10厘米是10个1/100米,可写成怎样的小数(0.10米),100毫米是100个1/1000米可写成怎样的小数(0.100米)

板书:因为1分米=10厘米=100毫米

所以0.1米=0.10米=0.100米

师:0.1、0.10、0.100是否相等为什么

(板书:0.1=0.10=0.100)

A、从左往右看,是什么情况(小数的末尾添上“0”,小数大小不变)

B、从右往左看,是什么情况(小数的末尾去掉“0”,小数大小不变)

C、由此,你发现了什么规律(小数的末尾添上“0”或去掉“0”,小数大小不变)

(2)出示:0.4元、0.5、0.05、0.40元4.0元。师:这些数中有大小相等的小数吗说出理由。(学生交流,教师适时适当地引导)

(3)让学生在两张同样大小的正方形纸上(其中一张均分为100格,一张均分为10格)表示出0.40、0.4,比较其大小,说明40个1/100就是4个1/10,

0.40=0.4

(4)师:如果在它们的末尾添上两个“0”呢,三个“0”呢相等吗为什么

(5)0.5添上“0”成0.05,大小有没有变化为什么

(6)揭示小数的性质。

2、小数性质的应用

师:根据这个性质,遇到小数末尾有“0”的时候,一般地可以去掉末尾的“0”,把小数化简。

(1)化简小数

出示例3:把0.60和203.0500化简。

提问:这样做的根据是什么弄清题意后,学生回答,教师板书:0.60=0.6;

203.0500=203.05。

口答:课本“练一练”第1题。

(2)把整数或小数改写成指定数位的小数

师:有时根据需要,可以在小数的末尾添上“0”;还可以在整数的个位右下角点上小数点,再添上“0”,把整数写成小数的形式。

如:2.5元=2.50元3元=3.00元

(3)出示例4:不改变数的大小,把0.4、3.16、10改写成小数部分是三位的小数。

0.4=0.4003.16=3.16010=10.000

练习:口答“练一练”第2题。

讨论小结:改写小数时一定要注意下面三点:

A、不改变原数的大小;

B、只能在小数的末尾添上“0”;

C、把整数改写成小数时,一定要先在整数个位右下角点上小数点后再添“0”。(想一想为什么)

三、巩固练习

练习二十四

第1题:下面的数,哪些“0”可以去掉,哪些“0”不能去掉指名同桌对口令,其余学生当小评委。

第2题:下面的数如果末尾添“0”哪些数的大小不变,哪些数的大小变化小组讨论,提问订正,找规律(小数的末尾添“0”大小不变,整数的末尾添“0”大小变了)。

第3题:把相等的数用线连起来,先在书上填好后,再提问找朋友。一个同学在第一栏里按顺序报数,其他同学准备当朋友。

第4题:化简下面小数,采取抢答来完成。

第5题:先填书上再口答订正。

第6题:用元作单位,把下面的钱数改写成小数部分是两位的小数。2人板演,其余学生齐练,评价鼓励。

苏教版五年级上册,第37--38页,例4、例5、例6。

1.在现实情境中通过观察、猜想、验证、比较、归纳等活动,理解并掌握小数的性质,会应用小数的性质解决实际问题。

2.经历从现象中发现问题、提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。

3.在经历变与不变的过程中挖掘数学内涵,感悟数学思想,发展学生的数学思维。

理解小数的性质,并能应用性质解决实际问题。

感悟小数性质中不变与变化的数学辩证思想,发展学生思维。

教学流程:

一、情景导入。

创设数学王国中数字“0”去做客的情景,发现数字“0”引起整数的变化。

二、自主探究。

1.以数字“0”前往小数家中做客的情景,引出问题:0.4是不是等于0.40.

2.在独立验证的基础上,小组讨论交流,为什么0.4=0.40?

3.借助:0.4=0.40=0.400,引导学生逐步概括出小数的性质。

4.深入研究小数的性质:

(1)从小数末尾添上“0”的情况去推断与思考去掉“0”的情况。

(2)在小数的末尾添上“0”或去掉“0”,小数的大小不变,但是小数的哪些方面发生了变化?让学生先讨论,在交流举例。

(3)质疑:为什么在整数的末尾每添上一个“0”,整数就要扩大10倍,而在小数的末尾添上若干个“0”,小数的大小不变?

5.添上两笔,让4、40、400三个数相等。

6.探讨:从0.4到0.04,小数的大小有没有发生变化?从而让学生更深刻的理解“小数的`末尾”这一关键词眼。

三、练习应用。

1.出示超市里某些食品的价格表,上面哪些小数里的“0”可以去掉?为什么?

总结:根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

质疑:为什么有些小数能化简,但是价格表中仍然写成两位小数?

2.把下面物品的价格写成用“元”作单位的两位小数。

总结:利用小数的性质,可以把小数或者整数改写成指定位数的小数。

3.初步感知小数改写的作用。

四、课堂总结。

通过这节课的学习,你有了哪些新的收获?

1、知识目标:引导学生初步理解小数的性质;能运用小数的性质正确地化简小数和改写小数。

2、能力目标:激发学生积极主动的探究精神,培养学生归纳、分析的能力。

3、情感目标:培养学生爱学数学的情感。

教学难点

掌握在小数部分什么位置添“0”去“0”,小数大小不变。

教具准备:

学习纸“小魔术”纸卡多媒体课件

课时:1课时

一、情景导入(小魔术)

1、师:同学们,第一次给你们上课,作为礼节,我给大家表演个魔术——数字的变化。看这是数字1?等会你们一起小声喊:1,2,3,大,老师就可以把这个数变大了。信不信?

生:1,2,3,大。

师:把1变成10,10和1比扩大了10倍,……

2、老师还有一个数0.1,我们再来试一试。

引起学生的冲突:到底变大了吗?

(设汁意图:是把枯燥的数学知识贯穿在小学生喜闻乐道的游戏中,引发学生的学习兴趣,点燃他们求知欲望的火花,从而进入的学习状态,为主动探究新知识聚集动力。)

这节课,我们就来研究小数末尾“0”对小数的大小的影响。也就是我们今天要学习内容——小数的性质。

二、探求新知

(一)教学例1

1、师:0.1米、0.10米、0.100米,他们到底会不会相等呢?

师:请拿出你的学习纸把第一题完成。

汇报:请学生上台展示。填空、比较发现一样,从而得出0.1米=0.10米=0.100米。

教学中让学生说说你是怎样找出0.1米、0.10米、0.100米。

(0.1米是一位小数,它的计数单位是1/10,有1个1/10,也就是说0.1米=1/10米,把1米平均分成10分,1份就是1分米。所以0.1米=1分米。

0.10米是两位小数,它的计数单位是1/100,有10个1/100,也就是说0.10米=10/100米,把1米平均分成100分,1份就是1厘米,10份是10厘米。所以0.10米=10厘米。

0.100米是三位小数,它的计数单位是1/1000,有100个1/1000,也就是说0.100米=100/1000米,把1米平均分成1000分,1份是1毫米,100份就是100毫米。所以0.100米=100毫米。)

因为1分米=10厘米=100毫米所以0.1米=0.10米=0.100米

师:0.1米=0.10米=0.100米(板书)这三个长度是一样的,都是以“米”为单位,我们就可以把数抽象出来0.1=0.10=0.100。

(设计意图:这样,学生根据小数的意义,主动从“0.l米、0.10米、0.100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识)。

仔细观察这组小数,你有什么发现?

生:小数的末尾添上“0”,小数的大小不变。

师:同学们的眼光真锐利。小数的末尾添上“0”,小数的大小不变。我现在有个疑问,其它的小数也有这样的特点吗?

师:现在请同学们翻开学习纸,根据方格图,自己想一组小数把它表示出来。

学生操作,交流汇报。

课件展示。

(教师在学习研究中要加强指导)

2、师:现在请同学们观察上面的题目中的小数,你能说出几组和它们类似的小数吗?

学生说说。

师:能说出这么多组,你们一定发现了什么规律吧?(交流,汇报)

总结:小数的末尾添上“0”或去掉“0”,小数的大小不变。

(设计意图:这样教学,把静态的知识结论转化动态的求知过程,让学生真正成为学习的主人,对所学的内容理解深刻,记忆牢固。同时,还培养了学生归纳概括事物本质属性的能力。)

3、联系生活,再现新知:还有同学们在商场看到货物的标价如:这样写,不但没有改变小数的大小,而且让顾客很清楚地知道是几元几角几分。

(二)小数性质的应用

1、教学例2

师:现在我们认识了小数的性质,那么应用小数的性质,我们可以根据需要对小数进行改写。

电脑演示:化简下面的小数。0.70=105.0900=

教学0.70=0.7

问:①你是怎样化简的?(根据小数的性质,去掉小数末尾的“0”就可以把小数化简)

②0.70与0.7它们的大小不变,但意义相同吗?

(不同,0.70表示70个1/100,0.7表示7个1/10)

教学105、0900=105.09

问:小数里的.其他“0”可以去掉吗?为什么?(不可以,大小改变。师要强调末尾)

2、教学例3

电脑演示:不改变数的大小,把下面各数写成三位小数。

0.2=4.08=3=

师:你是如何把它改写成三位小数的?(根据小数的性质,在小数的末尾添上“0”小数的大小不变)

师:3如何改写成三位小数?这个小数点不点的话可以吗?

注意:

A、在小数的末尾添“0”。

B、当这个数是整数时,在整数个位的右下角点上小数点,再添“0”。

师:应用小数性质时,应注意什么?(小数、末尾)

课本59页的做一做。

2、开火车的形式回答59页的做一做。

问:你是怎样化简和改写这些数的?

四、全课小节

1、这节课你学到了什么?

2、我们是怎样探索小数的性质的?

在整数的末尾添上或去掉0,整数的大小发生了很大的变化,而在小数的末尾添上或去掉0,小数的大小却不变,但是通过在小数的末尾添上或去掉0,我们就给一个小数找到了许多大小不变的朋友,0就是这样一个奇妙的数字。其实,数学王国里有许多奇妙的现象,等着我们不断去探索、发现。

板书:小数的性质

小数末尾“0”对小数的大小的影响

课题:比大小(二)

内容:小数的性质

课时:1

教学准备:

教学目标:1、通过“在方格纸上涂一涂,比较两个小数的大小”的活动,经历用几何模型研究小数的过程。

2、用直观的方式体会小数的末尾添上0或去掉0,小数的大小不变的规律。

3、在寻找小数大小的比较方法中,培养数感,获取数学学习方法。

基本教学过程:

一、一、创设问题情境

1、比较大小。1.26()2.030.23()0.31

2、0.2()0.20

二、自主探究,创建数学模型

1、思考一下,0.2和0.20谁大?你是怎样想的?

2、我们一起验证一下,在图上涂一涂,再来比一比。学生在书上涂一涂,比一比,再说一说。

3、0.2和0.20怎么会相等呢?这是不是一种巧合?

4、在下面两幅图中涂出相等的.两部分,并写出相应的分数和小数。

在小组内交流你的涂法和想法。你发现了什么?

三、巩固与应用

1、第10页试一试1、2。

2、第11页练一练1。

3、第2、3题。

4、阅读。《你知道吗?》

四、总结。

这节课你发现了什么?

教学反思:学生通过图一图、比一比,发现小数的末尾添上0或去掉0,小数的大小不变这一规律。并能熟练的应用这一规律。

1.使学生对数的整除的有关概念掌握得更加系统、牢固.

2.进一步弄清各概念之间的联系与区别.

3.使学生对最大公约数和最小公倍数的求法掌握得更加熟练.

4.掌握分数、小数的基本性质.

教学重点

通过对主要概念进行整理和复习,深化理解,形成知识网络.

弄清概念间的联系和区别,理解易混淆的概念.

教学步骤

一、铺垫孕伏.

教师谈话:同学们,昨天老师让大家在课下复习了第十册课本中约数和倍数一章的内容,

在这一章中我们学过了哪些概念呢?请同学们分组讨论,讨论时由一名同学做记录.(学生汇报讨论结果)

揭示课题:在数的整除这部分知识中,有这么多的概念,那么这些概念之间又有怎样的联系呢?这节课,我们就把这些概念进行整理和复习.

二、探究新知.

(一)建立知识网络.【演示课件“数的整除”】

1.思考:哪个概念是最基本的概念?并说一说概念的内容.

反馈练习:

在12÷3=44÷8=0.52÷0.l=203.2÷0.8=4中,被除数能除尽除数的有()个;被除数能整除除数的有()个.

教师提问:这四个算式中的被除数都能除尽除数,为什么只有这一个算式中的除数能整除被除数呢?整除与除尽到底有怎样的关系呢?

教师说明:能除尽的不一定都能整除,但能整除的一定能除尽.

2.说出与整除关系最密切的概念,并说一说概念的内容.

反馈练习:下面的说法对不对,为什么?

因为15÷5=3,所以15是倍数,5是约数.()

因为4.6÷2=2.3,所以4.6是2的倍数,2是4.6的约数.()

明确:约数和倍数是互相依存的,约数和倍数必须以整除为前提.

3.教师提问:

由一个数的倍数,一个数的.约数你又想到什么概念?并说一说这些概念的内容.

根据一个数所含约数的个数的不同,还可以得到什么概念?

互质数这个概念与哪个概念有关系?它们之间有怎样的关系呢?

互质数这个概念与公约数有关系,公约数只有1的两个数叫做互质数.

4.讨论互质数与质数之间有什么区别?

互质数讲的是两个数的关系,这两个数的公约数只有1,质数是对一个自然数而言的,它只有1和它本身两个约数.

5.教师提问:

如果我们把24写成几个质数相乘的形式,那么这几个质数叫做24的什么数?

只有什么数才能做质因数?

什么叫做分解质因数?

只有什么数才能分解质因数?

6.教师提问:

谁还记得,能被2、5、3整除的数各有什么特征?

由一个数能不能被2整除,又可以得到什么概念?

(二)比较方法.

1.练习:求16和24的最大公约数和最小公倍数.

2.思考:求最大公约数和最小公倍数有什么联系和区别?

(三)分数、小数的基本性质.

1.教师提问:

分数的基本性质是什么?

小数的基本性质是什么?

2.练习.

(1)想一想,小数点移动位置,小数大小会发生什么变化?

(2)

(3)下面这组数有什么特点?它们之间有什么规律?

0.1081.0810.81081080

三、全课小结.

这节课我们把数的整除的有关知识进行了整理和复习,进一步弄清了各概念之间的

联系和区别,并且强化了对知识的运用.

四、随堂练习

1.判断下面的说法是不是正确,并说明理由.

(1)一个数的约数都比这个数的倍数小.

(2)1是所有自然数的公约数.

(3)所有的自然数不是质数就是合数.

(4)所有的自然数不是偶数就是奇数.

(5)含有约数2的数一定是偶数.

(6)所有的奇数都是质数,所有的偶数都是合数.

(7)有公约数1的两个数叫做互质数.

2.下面的数哪些含有约数2?哪些是3的倍数?哪些能同时被2、3整除?哪些能同时被2、5整除?哪些能同时被3、5整除?哪些能同时被2、3、5整除?

183045707584124140420

3.填空.

在1到20中,奇数有();偶数有();质数有();合数有();

既是质数又是偶数的数是().

4.按要求写出两个互质的数.

(1)两个数都是质数.

(2)两个数都是合数.

(3)一个数是质数,一个数是合数.

5.说出下面每组数的最大公约数和最小公倍数.

42和1436和9

13和56和11

6.0.75=12÷()=():12=

五、布置作业

1.把下面各数分解质因数.

24456584102475

2.求下面每组数的最大公约数和最小公倍数.

36和4816、32和2415、30和90

六、板书设计

数的整除分数、小数的基本性质

数学教案-数的整除分数、小数的基本性质

教科书第80~81页,练习十六的习题.

教学目的

1.使学生掌握整除、约数和倍数、质数和合数等概念,知道它们之间的联系和区别.掌握能被2、5、3整除的数的特征.会分解质因数.会求最大公约数和最小公倍数.

2.使学生在理解的基础上掌握分数、小数的基本性质.

一、数的整除

1.整除的意义.

教师:想一想,什么叫做整除?指名回答.

教师进一步强调:整除中说的数是什么数?(整数.)

商是什么数?(整数.)有没有余数?(没有余数.)

教师:什么叫做除尽?(两数相除,余数是0.)

整除和除尽有什么联系和区别?指名回答.教师根据学生的回答,整理出下表:

被除数除数商余数

整除整数不等于O的整数整数O

除尽数不等于O的数数O

教师:可以看出整除是除尽的一种特殊情况.

2.能被2、5、3整除的数的特征.

教师:我们已经学过能被2、5、3整除的数的特征,同学们还记得吗?指名说一说.然后提问:

能被2、5整除的数,在判别方法上有什么共同的地方?(都根据个位数进行判别.)

能被3整除的数,在判别方法上与能被2、5整除的数有什么不同?气根据各个数位上的数之和进行判别.)

教师:什么叫做奇数?什么叫做偶数?

根据什么来判断一个数是奇数还是偶数?

3.约数和倍数.

教师:根据整除的概念可以得到约数和倍数的概念.什么叫做约数?什么叫做倍数?指名说一说.(如果a能被b整除,a就叫做b的倍数,b就叫做a的约数.)为了使学生进一步明确约数和倍数是相互依存的,教师可以接着提问:

能说6是约数,15是倍数吗?应该怎么说?

教师说明:在研究约数和倍数时,我们所说的数一般只指自然数,不包括0.

教师:一个数的约数的个数是怎样的?(有限的.)

其中最小的约数是什么数?最大的.约数是什么数?(1,这个数本身.)

一个数的倍数的个数是怎样的?(无限的.)

其中最小的倍数是什么数?(这个数本身.)

做练习十六的第2题.让学生直接做在书上.教师可以说明做的方法:在含有约数2的数下面写2,在3的倍数下面写3,在能被5整除的数下面写5,然后再进行判断.集体订正.

4.质数和合数.教师指名说一说质数、合数的概念.可有意识地让学习有困难的学生说,其他同学进行补充.

教师:怎样判断一个数是质数还是合数?(检查这个数有约数的个数,或查质数表.)指名说一说30以内有哪些质数.

让学生进行判断:一个自然数如果不是质数,那么一定是合数.学生判断后,教师说明:1既不是质数,也不是合数.

5.分解质因数.

指名说一说质因数、分解质因数的含义.

做练习十六的第5题.学生独立解答,教师巡视,集体订正.

6.公约数、最大公约数和公倍数、最小公倍数.

(1)复习概念.

教师:什么叫做公约数?什么叫做最大公约数?(几个数公有的约数,叫做这几个数的公约数;其中最大的一个叫做这几个数的最大公约数.)怎样求几个数的最大公约数?让学生举例说明.

什么叫做公倍数?什么叫做最小公倍数?怎样求几个数的最小公倍数?让学生举例说明.

教师:什么样的数叫做互质数?(公约数只有1的两个数叫做互质数.)

质数和互质数有什么区别?(质数是一个数,只有1和它本身两个约数;互质数是两个数,只有公约数1.)

两个不同的质数一定互质吗?(两个不同的质数一定互质.)

互质的两个数一定都是质数吗?(不一定,如4和9互质,4、9都是合数.)

(2)课堂练习.

做练习十六的第1题.先让学生独立判断,集体订正时,让学生说一说判断的理由.

做练习十六的第4题.学生独立解答,教师巡视,集体订正.教师根据前面的教学,整理出教科书第80页的概念联系图.也可以把该图变化成如下形式.

p。34—35的例5、例6及相应的试一试,练一练,完成练习六的第1—5题

1、使学生在建立猜想、验证猜想以及比较、归纳等活动中,理解小数的性质,会应用小数的性质化简或改写小数。

2、使学生经历从日常生活现象中提出问题并解决问题的过程,通过自主探索、合作交流等方式,积累数学活动的经验,发展数学思考的能力。

1、发现小数的性质并对小数的性质作出抽象概括。

2、理解小数的性质,会应用小数的性质解决问题。

理解小数的性质,会应用小数的性质解决问题

教学挂图、课件

一、复习引入

1、在下面()里填适当的小数。

0。40里面有()个0。01

3角=()元

30分=()元

二、体验发现,理解性质

1、出示例5:指名读题,分组讨论。

思考:小数部分末尾的'0添上或去掉,什么变了,什么没变?

2、完成试一试:

(1)学生自主填空。交流自己的看法,并阐明观点。

(2)汇报自己的结果。

(3)观察板书:你得到什么结论?学生自由发言。

三、理解内涵,学会应用。

1、课件出示例6:这些小数中,哪些0可以去掉?指名回答。学生自主填空。学生尝试做练一练第1题。独立完成,集体订正。

四、巩固练习

五、小结

《小数的性质及比较大小》

学生填完结果并订正

第二教时

3、生1:在两个大小一样的正方形里涂色比较。

(2)连线。把相等的数用直线连起来。

第五教时

第六教时

反馈:

第九教时

第十教时

第十二教时

教学内容:教科书P78~79的内容。

1、使学生通过整理和复习,弄清本单元学习了哪些知识,更牢固地掌握小数的意义和性质。

教学目的:

教学重点:理解小数的意义,掌握小数的性质和小数点位置移动引起小难点、数大小变化的规律。

教学难点:用“四舍五入”法按要求求出小数近似数。

一、揭示课题

这节课我们来复习小数的意义和性质。通过复习进一步理解小数的意义,掌握小数的性质以及小数点位置移动引起小数大小变化的规律,能把较大数改写成“万”或“亿”作单位的数,并能按要求求出小数的近似数。

二、复习小数的意义

1、做整理和复习第1题(

(1)学生在书上填写,集体订正。说一说这些小数的意义。

(2)说一说小数的意义是什么

问:一位小数、两位小数、三位小数……各表示几分之几的数

2、(1)在小数里,小数部分最高位是哪一位从小数点起,向右依次有哪些数位每个数位上计数单位是什么

(2)填空。

0.1里面有()个0.01。10个0.001是()。

10个0.1是()。0.1里有()个0.01。

三、复习小数的性质和小数的大小比较

1、练习。

(1)把下面小数化简。

4.70016.01008.710014.00

(2)不改变数的大小,把下面的数写成两位小数。

4.213.121

①学生做,指名板演,集体订正。

②问:做题时是根据什么来做的什么

(3)、做整理和复习第2题。

0.10.0120.1020.120.021

(2)按要求从小到大排列。

四、复习小数点位置移动引起小数大小变化的规律

1、做整理和复习第3题。

(1)小数点向右移动,原来的数就扩大,向右移动一位、两位、三位……,原数有什么变化小数点向左移动,原来的数就缩小,向左移动一位、两位、三位……原数有什么变化

问:要把一个数扩大(或缩小)10倍、100倍、1000倍……小数点应怎样移动

(2)学生练习,指名回答。

2、练习。

(1)把1.8扩大100倍是()。()扩大1000倍是6.21。

(2)把()缩小100倍是0.021。()缩小1000倍是6.21。

五、复习求小数的近似数和整数的改写

1、把下面小数精确到百分位。

0.8342.7863.895

(1)学生做,指名板演。

(2)让学生说一说怎样求一个小数的近似数。

2、(1)把下面各数改写成“万”作单位的'数。

486700521000

(2)把下面各数改写成“亿”作单位的数。

4600000007189600000

学生在练习本上做,指名板演,说一说怎样把一个较大数改写

成“万”或“亿”作单位的数。

3、把下面各数改写成“万”作单位的数,并保留一位小数。

67100209500

(1)学生在练习本上做,指名板演。

(2)比较改写成“万”或“亿”作单位的数和求一个小数的近似数时要注意什么

(3)比较25万和0.25亿大小,可以把25扩大10000倍,0.25扩大1亿倍。得到两个整数再比较大小。

(4学生练习,集体订正。

(5)小结:把一个数改写成“万”或“亿”作单位的数,只要在“万”位或“亿”位后面点上小数点,去掉小数点后面的0,再在后面添上“万”字或“亿”字,反过来,一个以“万”或“亿”作单位的数,要改写成原来的整数,只要把它扩大1万倍或1亿倍就可以

了。

六、全课总结

这节课复习了什么内容

怎样的数可以用小数表示?小数的性质是什么?小数点位置移动引起小数大小变化有什么规律?我们可以怎样比较小数的大小?

【作业设计】

1、0.45表示()。

2、把6.9566.9656.6599.6655.669按从小到大排列是()。

3、把6712098600改写成“万”作单位的数是()万,保留一位小数是(

)万;改写成“亿”作单位的数是()亿,保留一位小数是()亿。

4、在○里填“>”、“<”或“=”。

16.36○16.630.36万○3600

0.97○1.010.23亿○2100万

5、100千克稻谷可出大米76千克,平均每千克稻谷出大米多少千克

10000千克稻谷可出大米多少千克

四年级下册教材第38、39页的内容及练习十第1、2、3、4题。

1.引导学生知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写.

2.培养学生的动手操作能力以及观察、比较、抽象和归纳概括的能力.

3.培养学生初步的数学意识和数学思想,使学生感悟到数学知识的内在联系,同时渗透事物在一定情况下可以相互转化的观点.

让学生理解并掌握小数的性质.

能应用小数的性质解决实际问题.

教学步骤:

一、创设情境,导入新课。

创设情境:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店里一种雪糕标价是2.5元,右边一家则是2.50元,那你们去买的时候会选择哪一家呢为什么

为什么2.5元末尾添个0价钱不变呢究竟可以添几个零呢这节课我们就来研究这一方面的知识。

二、出示课题,提出目标。

1.知道、掌握小数的性质,能利用小数的性质进行小数的化简和改写.

2.培养动手操作能力以及观察、比较、抽象和归纳概括的能力.

3.培养初步的数学意识和数学思想,感悟到数学知识的内在联系.

三、自学尝试,探究新知。

1.出示尝试题

(1)1、10、100这三个数相等吗你能想办法使它们相等吗

(2)你能把1分米、10厘米、100毫米改用“米”作单位表示吗

(3)改写成用米作单位表示后,实际长度有没有变化说明什么

(4)“0.1米=0.10米=0.100米”这个等式从左往右看,小数末尾有什么变化小数大小有什么变化从右往左看又怎样呢你发现了什么规律

2.学生自学课本38页后尝试练习并讨论。(5分钟后全班交流)。

3.根据自学情况引导讲解。

四、拓展练习,验证结论。

为了验证我们的这个结论,我们再来做一个实验。

1.出示做一做:比较0.30与0.3的大小

你认为这两个数的大小怎样(让学生先应用结论猜一猜)

3.在两个大小一样的正方形里涂色比较。

(1)左图把1个正方形平均分成几份阴影部分用分数怎样表示用小数怎样表示

(2)右图把同样的正方形平均分成几份阴影部分用分数怎样表示用小数怎样表示

(3)小数由0.3到0.30,你看出什么变了什么没变你从中发现了什么(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0.3=0.30。)

概括总结:在小数的末尾添上“0”或者去掉“0”,小数的大小不变.这叫做小数的性质。

过度:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简。

五、应用新知,尝试练习。

(1)出示例3:把0.70和105.0900化简.

例4:不改变数的大小,把0.2、4.08、3改写成小数部分是三位的小数。

(2)学生自学课本后讨论交流,尝试练习。

(3)引导探究:哪些“0”可以去掉,哪些“0”不能去掉

105.0900中“9”前面的“0”为什么不能去掉

“3”的后面不加小数点行吗为什么

(4)同桌讨论:应用小数的性质时,要注意什么

六、巩固新知,当堂检测。

1.下面的数,哪些“0”可以去掉,哪些“0”不能去掉

3.90米0.30元500米1.80元0.70米0.04元600千克20.20米

2.下面的数如果末尾添“0”,哪些数的大小不变,哪些数的大小有变化

3.4180.067003.0908104.0315010.0142.00

3.化简下面的小数.

4.不改变数的大小,把下面各小数改写成小数部分是三位的小数.

5.判断.

5.00元=5元()7元=0.7元()8米=8.00米()

2.04吨=2.4吨()4.5千克=4.500千克()0.60升=0.6升()

6.用元作单位,把下面的价钱写成小数部分是两位的小数。

3元2角、6角、8元、1元零3分

设计说明

快乐教育理论认为人类的需要得到满足就是快乐。而快乐常常与兴趣联系在一起,兴趣使人产生钻研、探索、创新的愿望,从而激发快乐。基于此,本节课的教学设计突出以下几点:

1.创设情境,激发兴趣。

通过创设一个完整的故事情境,激发学生的学习兴趣,继而引出本节课所要探究的问题——小数的末尾添上“0”或去掉“0”,大小有变化吗?鼓励学生大胆猜想,并用多种方法进行验证,引导学生自主探究,培养学生发现问题、分析问题、解决问题的能力。

《新课程标准》强调:学生是学习的主体。本节课的教学充分发挥学生的主体作用,让学生通过对比,自己得出0.1m=0.10m=0.100m,并通过观察归纳出小数的性质:小数的'末尾添上“0”或去掉“0”,小数的大小不变。引导学生自学例3、例4,养成自主学习的良好习惯。

3.巩固应用,练习形式多样。

练习是巩固新知、形成能力、发展思维的重要手段。基于以上认识,本节课的练习题设置形式多样,梯度合理,既有基础练习,又有生活中的运用,使学生在轻松愉快的氛围中既巩固了基础知识,又深化了所学知识。

课前准备

教师准备多媒体课件正方形纸片数位顺序表

学生准备水彩笔米尺

⊙创设情境,课前质疑

师:小明的爸爸最近开了一家文化用品商店,想请大家帮忙设计价签,大家愿意帮这个忙吗?(出示中性笔和笔袋)每支中性笔2元5角,每个笔袋8元,价签该怎么写呢?(出示几种写法:2.5元、2.50元、8元、8.00元,引起争论)

师:我们在商店里看到的价签一般是这样的:2.50元,8.00元。2.5元和2.50元都表示2元5角吗?8元和8.00元相等吗?

生:2.5元和2.50元都表示2元5角,8元和8.00元相等。

师:为什么会相等呢?上完今天这节课你就明白了。(板书课题:小数的性质)

设计意图:给学生提供熟悉的生活情境,使学生产生亲切感,为构建新的认知结构打开切入口,同时引导学生针对生活化的问题情境做出数学猜想,以此猜想引领全课。

⊙探究新知

1.探究小数的性质。

(1)在括号里填上合适的单位名称,使等式成立。

1()=10()=100()

①学生先在小组内讨论、交流,然后教师指名汇报。

预设

生1:1元=10角=100分。

生2:1m=10dm=100cm。

生3:1dm=10cm=100mm。

②出示课件,一边讲解一边动画演示。

因为1dm=10cm=100mm,所以0.1m=0.10m=0.100m。(板书:0.1m=0.10m=0.100m)

(2)提问:根据0.1m=0.10m=0.100m,你发现了什么?通过小组活动进行探究。(出示课堂活动卡)

知识与技能:让学生在自主探究、合作交流中理解和掌握小数的性质,知道化简小数和改写小数的方法。

教学重难点:

一、创设情境,引入新课

师:同学们,认识这个数么?(出示卡片5)老师会变魔术,我能这个数变大,在它的末尾添上一个“0”,这个5发生了什么变化?

生:扩大了10倍。

师:我还能让它变大,现在又发生了什么变化?现在的数和“5”相比,末尾添了几个“0”,它的大小发生了什么变化?

生:末尾添了2个“0”,扩大了100倍。

师:那我们能让它变小么?

生:把末尾的“0”去掉。

师:现在去掉一个“0”,这个数发生了什么变化?再去掉一个“0”呢?

生:略。

师:看来在整数的末尾添上或去掉“0”,整数也随之扩大或缩小。那再看看这个数“0.5”,我在这个小数的`末尾添上“0”这个数会变么?

生:不会变。

师:那我再添上一个“0”呢?

生:还是不变。

师:你是怎么知道的?

师:所以你认为在小数的末尾添上“0”或去掉“0”小数的大小不变。(板书)这只是你的猜测,所以老师先在后面打上一个问号。刚刚某某同学说的只是一个个例,不具有普遍性,那如果要证明它具有普遍性,该怎么办呢?

生:验证。

(生动手操作)

(生汇报)

师:这位同学描述的非常完整,而且通过他们的操作我们更一目了然了,还有哪个小组也是用了正方形纸来验证的,说说你们验证的结论。

师:有没有哪个小组是借用皮尺来验证的,谁来说一说?

师:老师也准备了一把米尺,我把一米平均分成10份,取了其中2份,是2分米用小数表示也就是0.2米,把一米平均分成100份,取了其中20份,是20厘米用小数表示就是0.20米,再把一米平均分成1000份,取了其中200份,是200毫米用小数表示就是0.200米,它们都表示这段长度,所以0.2=0.20=0.200,结论是在0.2的末尾添上“0”小数的大小不变。

师:有哪个小组是借用数位顺序表来验证的么?

师:还有哪个小组也来说说你们组研究的结果。

师:刚才我们借用了教具来验证我们的猜想,有没有哪位同学是借助已有知识来验证的?前面我们已经学过了小数的意义……

师:我们再来看看开始是的卡片,整数5,5在什么位表示什么?在它的末尾添上一个“0”,5被挤到什么位,表示什么?再添上一个“0”5又被挤到什么位表示什么?5的位置发生了变化么?由于5的位置发生了变化,那你们认为他的大小会怎么样?

师:整数是这样,我们再看看小数,这是小数0.5,这时5在什么位表示什么?在0.5的末尾添上“0”,这时5在什么位表示什么?再添上一个“0”这时5在什么位表示什么?

师:5的位置有没有发生变化,照这样看,无论在0.5的末尾添上多少个0,5的位置不变,小数的大小也不变。

师:刚才我们举了那么多例子,都是在末尾添0的,从左往右看是单向思维,如果我们从右往左看,你们发现了什么?以这个为例谁来说一说。

师:你们真棒,如果我们把从左往右和从右往左合成一句话,会是什么?

师:在小数末尾添上0或去掉0小数的大小不变后面的问号是不是可以去掉了?我们发现的这个规律就是小数的性质,(板书)这是大家共同探究出来的,大家一起齐读一遍。

师:这是一张购物小票,老师圈出了几个数,你们认为这几个小数当中哪些0是可以去掉的?

师:1.05中的0可以去掉么?

生:不能,因为0不在末尾。

师:那你们认为在小数性质这句话中,哪个词是最重要的?

生:末尾。

师:接下来,我们来看这题,你们知道什么是化简么?

师:把末尾的0去掉,没有改变小数的大小,这样是不是更简单呢?那谁来回答这几题?

师:其实在不改变小数大小的情况下,我们除了可以化简还可以改写。把小面小数改写成三位小数。

师:今天我们学习了小数的性质,大家知道了什么?

生:略

师:老师根据本节课的内容设计了一幅思维导图,课后请同学们叶发挥自己的想象,根据本节课的内容设计一幅美观,内容详实的思维导图。

师:好的同学们,今天这节课上到这,下课。

【教学内容】

人教课标版小学四年级下册第58、59页的内容:小数的性质

【学情分析】

小数的性质是义务教育课程标准实验教科书四年级下册第58、59页的内容。是在学生学习了“小数的意义”的基础上深入学习小数有关知识的开始。掌握小数的性质,不但可以加深对小数意义的理解,而且为后面的小数的大小比较、小数四则计算打下坚实的基础。学生对于整数的知识已经有了较多的了解,对于整数的末尾添上“0”或者去掉“0”,会引起整数大小的变化有了一定的认识。但小数的性质却与整数不一样,在小数的末尾添上0或者去掉“0”,小数的大小不变,因此,整数的这部分知识,会对小数性质的学习产生负面的影响。

【教学目标】

【教学重难点】

【教法与学法】

【教学准备】

教师:自作课件

学生:收集的标签彩笔直尺和纸条

【教学过程】

一、创设情境,导入新课

1、师:课前老师让同学们回忆生活,观察商品的标价签,并记录1—2种商品的.价格,请谁来汇报一下?

生:2、00元,师:是多少钱呢?生:2元。

生:3、50元。师:是多少钱?生:3元5角

师:夏天的时候同学们都爱吃冷饮,老师了解到校门口左边的商店三色标价是2、5元,右边一家则是2、50元,那你们去买的时候会选择哪一家呢?为什么?

师:为什么2、5元末尾添个0大小不变呢?究竟可以添几个零呢?这节课我们就来研究这一方面的知识。

1、出示例1:下面请同学们利用直尺和桌面上的三张纸条分别量出0、1米,0、10米和0、100米长的纸条,各打上记号。各小组合作共同完成。

老师巡视并引导学生观察米尺图

2、各小组汇报:结合学生回答,教师板书:

0、1米是1/10米,就是1分米

0、10米是10/100米,就是10厘米

0、100米就是100/1000米,就是100毫米

因为1分米=10厘米=100毫米

所以0、l米=0、10米=0、100米

教师小结:这三个数量虽然各不相同,但表示大小相等、

设计意图:学生根据小数的意义,从“0、l米、0、10米、0、100米”出发研究问题。在问题得以解决的过程中,学生锻炼了运用已有知识解答新问题的能力,培养了运用数学知识的意识。

3、观察比较:教师指着“0、l米=0、10米=0、100米”这个等式,标出思考箭头先让学生从左往右观察、比较,你们发现了什么?

教师强调:我们如果遇到小数末尾有“0”的时候,一般可以去掉末尾的“0”,把小数化简、小数中间的0不能去掉、

4、练一练:

(1)多媒体出示58页做一做:比较0、30与0、3的大小

师:你认为这两个数的大小怎样?(让学生先应用结论猜一猜)

(3)在两个大小一样的正方形里涂色比较。

汇报结论:0、3=0、30

师质疑:小数由0、3到0、30,你看出什么变了?什么没变?你从中发现了什么?(平均分的份数变了,即小数的计数单位变了,而阴影部分的大小没有变,得出0、3=0、30。)

5、小数性质应用、【继续演示课件“小数的性质”】

(1)教学例3:把0、70和105、0900化简、

思考:哪些“0”可以去掉,哪些“0”不能去掉?

105、0900中“9”前面的“0”为什么不能去掉?

(0、70=0、7;105、0900=105、09)

(2)教学例4:不改变数的大小,把0、2、4、08、3改写成小数部分是三位的小数、学生独立完成,全班共同订正。

(0、2=0、200;4、08=4、080;3=3、000)

(3)你在哪些地方看到过小数末尾添0的数?(商场的标价上)

1、完成59页的做一做。

重点指导学生说一说为什么有些“0”不能去掉和

说一说为什么有些数的末尾添上“0”,原数就发生了变化、

2、挑战自我。

(1)谁能只动三笔,让下面三个数之间划上等号?

6020=602=60200

(2)每人写几个和3、200相等的数、

设计意图:挑战自我的习题留给学生课后去完成,让学生的学习活动从课堂延伸到课后。

THE END
1.一粒种子变成优质大米整个过程之~人工脱粒重温儿时记忆,稻谷脱粒的场景。虽然现在机器脱粒要比儿时先进太多,还好没有完全被替换掉。儿时记忆中是把稻子拉到自家的场院,https://www.meipian.cn/57kcssg8
2.水稻变成大米的简笔画过程简笔画图片大全水稻变成大米的简笔画过程水稻卡通简笔画 水稻简笔画步骤图 水稻怎么画 水稻简笔画怎么画的 杂交水稻简笔画手抄报手抄报模板大全 水稻的简笔画 水稻简笔画图片 稻谷简笔画怎么画稻谷简笔画简单又好看 水稻简笔画图片 简笔画稻谷 简单好学 杂交水稻简笔画 儿童水稻简笔画 水稻图片简笔画图片一片稻田简笔画 https://www.puchedu.cn/jianbihua/b8527690700d93ec.html
3.4.我们的衣食之源第1课时知识精研四年级道德与法治下册(统编统编版小学道德与法治四年级下册4.我们的衣食之源第1课时 目录01情境导入02活动一:衣食之源03活动二:白白的大米哪里来04课程小结 情境导入 人们在做什么?他们的劳动与我们的生活有什么关系? 活动一:衣食之源 小组讨论:分组讨论,这些食物和衣服是怎么来的?小组汇报:小组讨论后,各小组派代表上台分享本小组的讨论https://m.book118.com/html/2025/0311/6024000153011053.shtm
4.大米种植全过程“人类浇灌了稻谷,稻谷养育了人类”,米饭,是中国人餐桌上不可缺少的食物,是洪荒之初大地给人类最美的礼物,那大家知道我们每天吃的香喷喷米饭是怎么种出来的吗?下面就跟着米老板一起来看看耕作过程吧。 大米种植全过程,长知识了! 整地 1插秧前,农户在稻田撒播有机肥,进行积肥。 http://www.51homefarm.com/news/4.html
5.A.稻谷由胚珠发育而来B.大米的营养成分主要储存在胚乳中C.大米A.稻谷由胚珠发育而来 B.大米的营养成分主要储存在胚乳中 C.大米由子房发育而成 D.环境适宜时大米能够正常萌发 【考点】果实和种子的形成;种子萌发的条件和过程;种子的结构和成分;双子叶植物与单子叶植物及其种子结构的异同. 【答案】B 【解答】 【点评】 https://www.jyeoo.com/shiti/6c71049e-15aa-4b15-8456-f25c36149e92
6.水稻变成大米的全过程,你了解多少经过筛选后,优质的饱满稻谷可被用于销售或自家食用。接下来是机米的过程。在农村,通常会有专门的米机铺来提供机米服务。将稻谷倒入机器的漏斗中,启动机器后,米糠和大米便会同时产出。刚脱壳的大米还需经过风柜的进一步吹选,以确保品质。过去,机米一次的费用并不高,甚至有些地方老板会因米糠而给你一些额外https://baijiahao.baidu.com/s?id=1826201588076507429&wfr=spider&for=pc