12种干燥设备结构分析和工作原理演示,还有你没见过的动画演示!

在工业生产中,由于被干燥物料的形状(块状、粒状、溶液、浆状及膏糊状等)和性质(耐热性、含水量、分散性、粘性、耐酸碱性、防爆性及湿度等)不同,生产规模或生产能力也相差较大,对干燥产品的要求(如含水量、形状、强度及粒度等)也不尽相同,因此,所采用干燥器的型式也是多种多样的。今天,小七就带大家认识一下各种干燥机运行原理。

通常,干燥器可按加热方式分成如表下所示的类型。

常用干燥器的分类

厢式干燥器又称盘式干燥器,是一种常压间歇操作的最古老的干燥设备之一。一般小型的称为烘箱,大型的称为烘房。按气体流动的方式,又可分为并流式、穿流式和真空式。

并流式干燥器的基本结构如图片5-16所示,被干燥物料放在盘架7上的浅盘内,物料的堆积厚度约为10~100mm。风机3吸入的新鲜空气,经加热器5预热后沿挡板6均匀地水平掠过各浅盘内物料的表面,对物料进行干燥。部分废气经排出管2排出,余下的循环使用,以提高热效率。废气循环量由吸入口或排出口的挡板进行调节。空气的流速根据物料的粒度而定,应使物料不被气流挟带出干燥器为原则,一般为1~10m/s。这种干燥器的浅盘也可放在能移动的小车盘架上,以方便物料的装卸,减轻劳动强度。

若对干燥过程有特殊要求,如干燥热敏性物料、易燃易爆物料或物料的湿分需要回收等,厢式干燥器可在真空下操作,称为厢式真空干燥器。干燥厢是密封的,将浅盘架制成空心的,加热蒸汽从中通过,干燥时以传导方式加热物料,使盘中物料所含水分或溶剂汽化,汽化出的水汽或溶剂蒸汽用真空泵抽出,以维持厢内的真空度。

穿流式干燥器的结构如图5-17所示,物料铺在多孔的浅盘(或网)上,气流垂直地穿过物料层,两层物料之间设置倾斜的挡板,以防从一层物料中吹出的湿空气再吹入另一层。空气通过小孔的速度约为0.3~1.2m/s。穿流式干燥器适用于通气性好的颗粒状物料,其干燥速率通常为并流时的8~10倍。

厢式干燥器还可用烟道气作为干燥介质。

厢式干燥器的优点是结构简单,设备投资少,适应性强。缺点是劳动强度大,装卸物料热损失大,产品质量不易均匀。厢式干燥器一般应用于少量、多品种物料的干燥,尤其适合于实验室应用。

洞道式干燥器的器身为狭长的洞道,内敷设铁轨,一系列的小车载着盛于浅盘中或悬挂在架上的湿物料通过洞道,在洞道中与热空气接触而被干燥。小车可以连续地或间歇地进出洞道。

根据被干燥物料的性质不同,传送带可用帆布、橡胶、涂胶布或金属丝网制成。

物料在带式干燥器内基本可保持原状,也可同时连续干燥多种固体物料,但要求带上物料的堆积厚度、装载密度均匀一致,否则通风不均匀,会使产品质量下降。这种干燥器的生产能力及热效率均较低,热效率约在40%以下。带式干燥器适用于干燥颗粒状、块状和纤维状的物料。

上图所示的为用热空气直接加热的逆流操作转筒干燥器,其主体为一略微倾斜的旋转圆筒。湿物料从转筒较高的一端送入,热空气由另一端进入,气固在转筒内逆流接触,随着转筒的旋转,物料在重力作用下流向较低的一端。通常转筒内壁上装有若干块抄板,其作用是将物料抄起后再洒下,以增大干燥表面积,提高干燥速率,同时还促使物料向前运行。当转筒旋转一周时,物料被抄起和洒下一次,物料前进的距离等于其落下的高度乘以转筒的倾斜率。如图5-21所示,抄板的型式多种多样。同一回转筒内可采用不同的抄板,如前半部分可采用结构较简单的抄板,而后半部分采用结构较复杂的抄板。

干燥器内空气与物料间的流向除逆流(counter-currentflow)外,还可采用并流(co-currentflow)或并逆流相结合的操作。并流时,入口处湿物料与高温、低湿的热气体相遇,干燥速率最大,沿着物料的移动方向,热气体温度降低,湿度增大,干燥速率逐渐减小,至出口时为最小。因此,并流操作适用于含水量较高且允许快速干燥、不能耐高温、吸水性较小的物料。而逆流时干燥器内各段干燥速率相差不大,它适用于不允许快速干燥而产品能耐高温的物料。

为了减少粉尘的飞扬,气体在干燥器内的速度不宜过高,对粒径为1mm左右的物料,气体速度为0.3~1.0m/s;对粒径为5mm左右的物料,气速在3m/s以下,有时为防止转筒中粉尘外流,可采用真空操作。转筒干燥器的体积传热系数较低,约为0.2~0.5W/(m3·℃)。

对于能耐高温且不怕污染的物料,还可采用烟道气作为干燥介质。对于不能受污染或极易引起大量粉尘的物料,可采用间接加热的转筒干燥器。这种干燥器的传热壁面为装在转筒轴心处的一个固定的同心圆筒,筒内通以烟道气,也可沿转筒内壁装一圈或几圈固定的轴向加热管。由于间接加热转筒干燥器的效率低,目前较少采用。

气流干燥器是一种连续操作的干燥器。湿物料首先被热气流分散成粉粒状,在随热气流并流运动的过程中被干燥。气流干燥器可处理泥状、粉粒状或块状的湿物料,对于泥状物料需装设分散器,对于块状物料需附设粉碎机。气流干燥器有直管型、脉冲管型、倒锥型、套管型、环型和旋风型等。

图5-22所示为装有粉碎机(bouldercrusher)的直管型气流干燥装置的流程图。气流干燥器的主体是直立圆管4,湿物料由加料斗9加入螺旋输送混合器1中与一定量的干物料混合,混合后的物料与来自燃烧炉2的干燥介质(热空气、烟道气等)一同进入粉碎机3粉碎,粉碎后的物料被吹入气流干燥器中。在干燥器中,由于热气体作高速运动,使物料颗粒分散并随气流一起运动,热气流与物料间进行热质传递,使物料得以干燥。干燥后的物料随气流进入旋风分离器(cycloneseparator)5,经分离后由底部排出,再经分配器8,部分作为产品排出,部分送入螺旋混合器供循环使用,而废气经风机6放空。

气流干燥器具有以下特点:

(1)处理量大,干燥强度大。由于气流的速度可高达20~40m/s,物料又悬浮于气流中,因此气固间的接触面积大,热质传递速率快。对粒径在50μm以下的颗粒,可得到干燥均匀且含水量很低的产品。

(3)设备结构简单,占地面积小。固体物料在气流作用下形成稀相输送床,所以输送方便,操作稳定,成品质量均匀,但对所处理物料的粒度有一定的限制。

(4)产品磨损较大。由于干燥管内气速较高,物料颗粒之间、物料颗粒与器壁之间将发生相互摩擦及碰撞,对物料有破碎作用,因此气流干燥器不适于易粉碎的物料。

(5)对除尘设备要求严,系统的流体阻力较大。

采用30~40m/s的气速对粒径在100μm以下的聚氯乙烯颗粒进行气流干燥实验,测得的体积传热系数与干燥管高度Z的关系如图5-23所示,可看出,干燥管底部的数值最大,随Z增高而降低,在干燥管底部降的最快。

当湿物料进入干燥管后,物料颗粒在干燥器中的运动属于固体颗粒在流动流体中的沉降运动,将经历加速段和恒速段。通常加速段在加料口之上1~3m内完成,加速段内气体与颗粒间相对速度大,因而对流传热系数也大;同时在干燥管底部颗粒最密集,即单位体积干燥器中具有较大的传热面积,所以加速段中的体积传热系数也较大。另一方面,在干燥管的底部,气固间的温度差也较大,干燥速率最快。一般地,在加料口以上1m左右的干燥管内,由气体传给物料的热量约占整个干燥管中传热量的1/2~3/4。

由上分析可知,欲提高气流干燥器的干燥速率和降低干燥管的高度,应发挥干燥管底部加速段的作用以及增加气体和颗粒间的相对速度。据此已提出许多改进的措施,如采用脉冲管,即将等径干燥管底部接上一段或几段变径管,使气流和颗粒速度处于不断地改变状态,从而产生与加速段相似的作用。

流化床干燥器又称沸腾床干燥器,是流态化技术在干燥操作中的应用。流化床干燥器种类很多,大致可分为:单层流化床干燥器、多层流化床干燥器、卧式多室流化床干燥器、喷动床干燥器、旋转快速干燥器、振动流化床干燥器、离心流化床干燥器和内热式流化床干燥器等。

图5-24为单层圆筒流化床干燥器。颗粒物料放置在分布板上,热空气由多孔板的底部送入,使其均匀地分布并与物料接触。气速控制在临界流化速度和带出速度之间,使颗粒在流化床中上下翻动,彼此碰撞混合,气固间进行传热和传质。气体温度降低,湿度增大,物料含水量不断降低,最终在干燥器底部得到干燥产品。热气体由干燥器顶部排出,经旋风分离器分出细小颗粒后放空。当静止物料层的高度为0.05~0.15m时,对于粒径大于0.5mm的物料,气速可取为(0.4~0.8)ut;对于粒径较小的物料,颗粒床内易发生结块,一般由实验确定操作气速。

流化床干燥器的特点:

(1)流化干燥与气流干燥一样,具有较高的热质传递速率,体积传热系数可高达2300~7000W/(m3.℃)。

(3)流化床干燥器结构简单,造价低,活动部件少,操作维修方便。与气流干燥器相比,流化床干燥器的流体阻力较小,对物料的摩损较轻,气固分离较易,热效率较高(对非结合水的干燥为60~80%,对结合水的干燥为30~50%)。

(4)流化床干燥器适用于处理粒径为30μm~6mm的粉粒状物料,粒径过小使气体通过分布板后易产生局部沟流,且颗粒易被夹带;粒径过大则流化需要较高的气速,从而使流体阻力加大、磨损严重。流化床干燥器处理粉粒状物料时,要求物料中含水量为2~5%,对颗粒状物料则可低于10~15%,否则物料的流动性较差。但若在湿物料中加人部分干料或在器内设置搅拌器,则有利于物料的流化并防止结块。

图片5-26所示为卧式多室流化床干燥器,其主体为长方体,一般在器内用垂直挡板分隔成4~8室。挡板下端与多孔板之间留有几十毫米的间隙(一般取为床层中静止物料层高度的1/4~1/2),使物料能逐室通过,最后越过堰板而卸出。热空气分别通过各室,各室的温度、湿度和流量均可调节,如第一室中的物料较湿,热空气流量可大些,同时可设置搅拌器使物料分散,最后一室可通入冷空气冷却干燥产品,以便于贮存。这种型式的干燥器与多层流化床干燥器相比,操作稳定可靠,流体阻力较小,但热效率较低,耗气量大。

常用的喷雾干燥流程如图5-27所示。浆液用送料泵压至喷雾器(喷嘴),经喷嘴喷成雾滴而分散在热气流中,雾滴中的水分迅速汽化,成为微粒或细粉落到器底。产品由风机吸至旋风分离器中而被回收,废气经风机排出。喷雾干燥的干燥介质多为热空气,也可用烟道气,对含有机溶剂的物料,可使用氮气等惰性气体。

喷雾器是喷雾干燥的关键部分。液体通过喷雾器分散成10~60μm的雾滴,提供了很大的蒸发面积(每m3溶液具有的表面积为100~600m2),从而达到快速干燥的目的。对喷雾器的一般要求为:形成的雾粒均匀,结构简单,生产能力大,能量消耗低及操作容易等。常用的喷雾器有三种基本型式:

(1)压力式喷雾器压力式喷雾器(mistblower)如图5-28b所示。用高压泵使液浆获得高压(3~20MPa),液浆进入喷嘴的螺旋室并作高速旋转,然后从出口小孔呈雾状喷出。压力式喷雾器的特点是结构简单、操作简便、耗能低、生产能力大,但需使用高压系统。压力式喷雾器是目前应用最广的喷雾器。

(2)旋转式喷雾器(rotaryatomizer)图5-28a所示为旋转式喷雾器,料液被送到一高速旋转圆盘的中部,圆盘上有放射形叶片,一般圆盘转速为4000~20000r/min,圆周速度为100~160m/s。液体在离心力的作用下,呈雾状从圆盘的周边甩出。当处理物料的固体浓度较大时,宜采用旋转式喷雾器。

(3)气流式喷雾器气流式喷雾器如图5-28c所示。用高速气流使料液经过喷嘴成雾滴而喷出。一般所用压缩空气的压力在0.3~0.7MPa。气流式喷雾器所喷出的雾滴最细,当处理量较少时,常采用气流式喷雾器。气流式喷雾器也可用于处理含有少量固体的溶液。

喷雾室有塔式和箱式两种,以塔式应用最为广泛。

滚筒干燥器是以导热方式加热的连续干燥器,它适用于溶液、悬浮液、胶体溶液等流动性物料的干燥。

上图为双滚筒干燥器(doubledrumdryer),主体为两个旋转方向相反的滚筒,滚筒部分表面浸在料槽中,当滚筒转动时,从料槽中转出的那部分表面便沾上厚度为0.3~5mm的薄层料浆。加热蒸汽通入滚筒内部,通过筒壁的导热,使物料中的水分蒸发,水汽与其挟带的粉尘由滚筒上方的排气罩排出。滚筒转动一周,物料即被干燥,并由滚筒壁上的刮刀刮下,经螺旋输送器送出。对易沉淀的料浆可将原料向两滚筒间的缝隙处洒下。

闪蒸干燥机是由热空气切线进入干燥器底部,在搅拌器带动下形成强有力的旋转风场。物料由螺旋加料器进入干燥器内,在高速旋转搅拌桨的强烈作用下,物料受撞击、磨擦及剪切力的作用下得到分散,块状物料迅速粉碎,与热空气充分接触、受热、干燥。干燥好的物料被气流携带进入收尘系统进行收集处理,符合环保要求含尘量《50mg/m3的尾气由引风机排空,完成整个干燥过程。

热空气由入口管以切线方向进入干燥室底部的环隙,并螺旋状上升,同时,物料由加料器定量加入塔内,并与热空气进行充分热交换,较大较湿的物料在搅拌器作用下被机械破碎,湿含量较低及颗粒度较小的物料随旋转气流一并上升,输送至分离器进行气固分离,成品收集包装,而尾气则经除尘装置处理后排空。

污泥专用干燥机是一种间接加热低速搅拌型干燥机。设备内部有两根或者四根空心转动轴,空心轴上密集并联排列着扇面楔形中空叶片,结构设计特殊巧妙。轴体相对转动,利用角速度相同而线速度不同的原理和结构巧妙地达到了轴体上污泥的自清理作用,最大限度地防止了污泥干化过程中的“抱轴”现象。以最快速度使得污泥在干化过程中迅速冲过“胶粘化相区域”。同时巧妙的结构使得污泥在干化过程中达到了双向剪切状态。被干燥的污泥由螺旋送料机定量地连续送入干燥机的加料口,污泥进入器身后,通过桨叶的转动使污泥翻转、搅拌,不断更新加热介面,与器身和桨叶接触,被充分加热,使污泥所含的表面水分蒸发。同时,污泥随桨叶轴的旋转成螺旋轨迹向出料口方向输送,在输送中继续搅拌,使污泥中渗出的水分继续蒸发。最后,干燥均匀的合格产品由出料口排出。采用夹套式壳体结构,使得污泥在机器内部各个界面均匀受热,轴体转动,污泥在设备内不段翻腾,受热面不断翻新。从而大大提高了设备的蒸法效率,既达到了污泥干化的目的,又实现了整套装置的低成本运行。

污泥干燥机主要由引风机、打散装置、带式上料机、进料机、回转滚筒、热源、带式出料机、卸料器和配电柜构成。因此万泰污泥干燥机的工作区包括出料区、倾斜扬料板区、清理区、导料区构成。

一、导料区,湿污泥进入此区与高温热风接触迅速蒸发水分,物料在大导角的抄板抄动下,形不成粘结便被导入下一个工作区;

二、出料区,滚筒在此区不设抄板,物料在此区滚动滑行至排料口,完成整个干燥过程;

三、清理区,湿污泥在此区被抄板抄抄起形成料幕状态,物料落下时易形成粘结滚筒壁现象,在此区由于设备设计有清扫装置,清扫装置便十分合理地清扫了内壁粘附的物料,在这个过程中,清扫装置对于物料团球结块也起破碎作用,从而增加了热交换面积,提高了干燥速率;

四、倾斜扬料板区,湿污泥在此区已呈低水分松散状态,物料在此区已不具有粘结现象,经过热交换后物料达到所要求的水分状态,进入最后的出料区..有着多种微生物的河流水渠污泥一直以来被人们所忽视,也为城市环境治理带来诸多难题。我厂研发的污泥烘干设备可将污泥烘干,便于污泥生物有机肥的生产,是有机肥制造企业的首选烘干设备。

THE END
1.新型高效转筒粮食烘干机图纸下载农业机械图纸新型高效转筒粮食烘干机,提高物料在筒体截面占有率、延长物料滞空 时间、增加物料扬起次数,亦即设计结构合理、布置 得当的扬料装置和适宜的回转速度。 经过一轮烘干过后,还带有较高热量的气体,在经由废气过滤,与水分吸收后仍然可再作为烘干介质二次使用。改变传统的https://www.mfcad.com/tuzhi/378/1628463.html
2.小型粮食烘干机,粮食烘干机价格,移动式粮食干燥机厂家粮食烘干机简介: 我公司生产的粮食烘干机是用来烘干谷物和油料的理想设备,加工品从塔顶输入,通过给料装置,确保设备在运行期间始终处于满负载状态。经过向内翻转的无底的V型挡板和与加工交错排列的多排V型挡板的联合作用,是加工品得以混合,同时还作为干http://www.htjx116.com/hongganji/10.html
3.粮食烘干机结构设计(含6张CAD图纸)粮食烘干机结构设计(含6张CAD图纸),粮食,烘干机,结构设计,CAD,图纸 内容简介: 目 录摘 要.1ABSTRACT.2第一章 绪论.31.1 课题研究的背景和意义 .31.2 国内外研究现状 .4第二章 总体结构设计.82.1 设计要求 .82.2 结构方案设计 .92.3 加热烘干方式 .9第三章 主要零部件的设计.103.1 机架的设计 .103.2 定https://www.renrendoc.com/paper/208610688.html
4.鹤壁粮食烘干塔鹤壁稻谷烘干机鹤壁玉米烘干机河南省丰盛机械有限公司是集粮食烘干塔的开发、科研、生产、安装、调试、售后服务为一体,面向国内外粮食、食品、化工等行业提供干燥设备的专业制造商,主要产品有玉米烘干机、稻谷烘干机及各种吨数的烘干塔产品。http://www.fshgt.com/hebi/
5.小型小麦烘干机粮食烘干机器滚筒式一机多用自动控温现货低价这款设备采用了顺流干燥技术,使物料与热源气流得以和谐共舞,共同开启干燥之旅。烘干机出料口温度恰到好处,既确保了热能的充分利用,又化了内部结构的合理性,进一步促进了分散物料的便捷清扫与热传导。设计巧妙地避免了桶体内壁的粘粘问题,降低了干燥成本,同时提升了干燥效果,使整个流程更加迅速。 https://www.yiwugo.com/product/detail/961166850.html
6.低温循环粮食快速烘干设备小麦烘干机是农业机械化生产的重要组成部分,有了它,玉米才能实现机械化干燥,粮食烘干机它是立式结构,用户只需要将所要烘干的谷物经由提升机提升至塔顶再送入烘干主机内部,依靠自重堆积到储粮观察孔上沿,此时方可停止上料,然后关闭风机冷风档,点燃热风炉,打开风机热风挡,启动风机为烘干主机提供热风,一小时后启动排粮循https://www.china.cn/huizhuanguntongganzsb/4721508308.html
7.杞县五丰5XH30循环谷物干燥机五丰烘干机雷创牌循环谷物干燥机是采用混流式烘干工艺所设计的新型烘干设备,拥有宽阔的烘干面积以及强有力的通风系统,并且通过间接式的加热方式对粮食作物进行烘干,保证作物不会产生任何的污染,加上全方位的热风通透设计以及环保排尘的系统设计,使得每一粒谷物都能够得到充分干燥,具有干燥均匀、干燥作物品质俱佳的优势。 http://www.nongjitong.com/product/qxwufeng_5xh-30_direct_fired_dryer.html
8.粮食烘干机机械结构设计小型粮食烘干机滚筒结构设计2.2 结构方案设计 本次毕业设计研究的烘干机属于卧式结构,内部采用了双筒设计,外筒精静止,内筒防止粮食。在工作的时候通过传动在内容内部的叶片能够带动粮食转动,并且呈现自由洒落的状态,从而能够和通入的热风进行充分的接触。整个烘干机的动力通过电机驱动链条传动的方式提供动力,通过链传动实现传递,设备能够灵活的调节https://blog.csdn.net/sheziqiong/article/details/135641375